H. CHEN ET AL.
[20] A. Michrowska, L. Gulajski, Z. Kaczmarska, K. Mennecke, A. Kirschning,
K. Grela, Green Chem. 2006, 8, 685.
[21] D. Rix, H. Clavier, Y. Coutard, L. Gulajski, K. Grela, M. Maudint,
J. Organomet. Chem. 2006, 691, 5397.
quaternary ammonium or pyridinium anion–cationic substitu-
ents with multi-atomic anions in large size on ligand linearly.
To better understand the relativity between the electronic effect
and reactivity, we synthesized metal Schiff base catalysts with
imidazolium anion–cationic substituents on ligand Co-[Salen-
Mim][X]2 (X = PF6ꢀ, ClO4ꢀ, BF4ꢀ, NOꢀ3 , and Brꢀ), and calculated the
Hammett constants of their anion–cationic substituents on
ligand. The oxidation of 4-methyl guaiacol was then carried out
to investigate the electronic effect of these anion–cationic sub-
stituents on the catalytic activities of catalysts. The results show
that a linear relativity also exists between the Hammett
constants of the anion–cationic substituents with multi-atomic
anions and their reactivity. The quantitative electronic effect
and reactivity relationships proposed in the present study are
expected to be useful in designing a more powerful catalyst with
anion–cationic substituents with multi-atomic anions in large
size on ligand.
[22] R. D. Stolow, J. Am. Chem. Soc. 1959, 81, 5806.
[23] E. L. Eliel, E. W. Della, T. H. Williams, Tetrahedron Lett. 1963, 831.
[24] J. Sicher, J. Jonas, M. Tichy, Tetrahedron Lett. 1963, 825.
[25] C. L. Perrin, M. A. Fabian, K. B. Armstrong, J. Org. Chem. 1994,
59, 5246.
[26] C. L. Perrin, J. Kuperman, J. Am. Chem. Soc. 2003, 125, 8846.
[27] J. T. Edward, P. G. Farrell, J. Kirchnerova, J. C. Halle, R. Schaal, Can. J.
Chem. Rev. Can. De Chim. 1976, 54, 1899.
[28] X. B. Hu, C. Y. Liu, Y. T. Wu, Z. B. Zhang, J. Phys. Chem. C. 2011,
115, 23913.
[29] D. B. Zhao, Z. F. Fei, T. J. Geldbach, R. Scopelliti, P. J. Dyson, J. Am.
Chem. Soc. 2004, 126, 15876.
[30] A. C. Pinto, A. A. M. Lapis, B. V. da Silva, R. S. Bastos, J. Dupont,
B. A. D. Neto, Tetrahedron Lett. 2008, 49, 5639.
[31] L. P. Hammett, J. Am. Chem. Soc. 1937, 59, 96.
[32] C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 1991, 91, 165.
[33] J. Shorter, Pure Appl. Chem. 1994, 66, 2451.
[34] J. Picha, R. Cibulka, F. Liska, P. Parik, O. Pytela, Collect. Czech. Chem.
Commun. 2004, 69, 2239.
[35] L. P. Hammett, Physical Organic Chemistry 2nd edn. MeGrawlill,
New York, 1970.
[36] H. Chen, L. Jia, X. Xu, J. Y. Mao, Y. Wang, C. M. Wang, H. L. Li, J. Phys.
Org. Chem. 2013, 26, 460.
Acknowledgements
This work was supported by the Program for Zhejiang Leading
Team of S&T Innovation (2011R50007), and the Fundamental
Research Funds of the Central Universities.
[37] Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel,
G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery,
Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,
G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg,
V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas,
D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz,
Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu,
A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith,
M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe,
P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and
J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.
REFERENCES
[1] B. Meunier, Chem. Rev. 1992, 92, 1411.
[2] T. Punniyamurthy, S. Velusamy, J. Iqbal, Chem. Rev. 2005, 105, 2329.
[3] J. Y. Mao, N. Li, H. R. Li, X. B. Hu, J. Mol. Catal. A: Chem. 2006, 258, 178.
[4] Y. Sun, K. X. Chen, L. Jia, H. R. Li, Phys. Chem. Chem. Phys. 2011, 13,
13800.
[5] A. M. Kirillov, G. B. Shul’pin, Coord. Chem. Rev. 2013, 257, 732.
[6] W. Zhang, J. L. Loebach, S. R. Wilson, E. N. Jacobsen, J. Am. Chem.
Soc. 1990, 112, 2801.
[7] T. Nyokong, Coord. Chem. Rev. 2007, 251, 1707.
[8] X. B. Hu, Y. Sun, J. Y. Mao, H. R. Li, J. Catal. 2010, 272, 320.
[9] D. J. Cole-Hamilton, Science. 2003, 299, 1702.
[10] M. Lombardo, C. Trombini, Chemcatchem. 2010, 2, 135.
[11] H. C. Nicolas Audic, M. Mauduit, J. -C. Guillemin, J. Am. Chem. Soc.
2003, 125, 9248.
[12] Q. Yao, Y. Zhang, Angew. Chem. Int. Ed. 2003, 42, 3395.
[13] X. B. Hu, J. Y. Mao, Y. Sun, H. Chen, H. R. Li, Catal. Commun. 2009,
10, 1908.
[38] T. Welton, Chem. Rev. 1999, 99, 2071.
[39] J. Dupont, R. F. de Souza, P. A. Z. Suarez, Chem. Rev. 2002, 102, 3667.
[40] C. F. Guerra, T. van der Wijst, F. M. Bickelhaupt, Chem. A Eur. J. 2006,
12, 3032.
[41] Z. Q. Zhu, S. J. Xiang, Q. Y. Chen, C. S. Chen, Z. Zeng, Y. P. Cui,
J. C. Xiao, Chem. Commun. 2008, 5016.
[14] X. A. Yun, X. B. Hu, Z. Y. Jin, J. H. Hu, C. Yan, J. Yao, H. R. Li, J. Mol.
Catal. A: Chem. 2010, 327, 25.
[15] P. Zhang, C. Wang, Z. Chen, H. Li, Catal. Sci. Technol. 2011, 1, 1133.
[16] P. Zhang, Y. Gong, Y. Lv, Y. Guo, Y. Wang, C. Wang, H. Li, Chem.
Commun. 2012, 48, 2334.
[17] J. H. Hu, Y. F. Hu, J. Y. Mao, J. Yao, Z. R. Chen, H. R. Li, Green Chem.
2012, 14, 2894.
[18] R. Tan, D. Yin, N. Yu, Y. Jin, H. Zhao, J. Catal. 2008, 255, 287.
[19] R. Tan, D. Yin, N. Yu, H. Zhao, D. Yin, J. Catal. 2009, 263, 284.
SUPPORTING INFORMATION
Additional supporting information may be found in the online
version of this article at the publisher’s web-site.
wileyonlinelibrary.com/journal/poc
Copyright © 2015 John Wiley & Sons, Ltd.
J. Phys. Org. Chem. 2015, 28 570–574