The formation of oxathiolane imines for 1f and 1o, for example,
results in steric overcrowding at the epoxide carbon atoms. The
stability of these cyclic intermediates is limited and therefore the
concentration is low; as a result we were only able to isolate the
2-thiocyanato ethanols and the corresponding thiiranes. Other
epoxides like 1a, 1k, or 1m cleanly form the desired thiirane and
no intermediates were isolable.
15 (a) H. Bouda, M. E. Borredon, M. Delmas and A. Gaset, Synth.
Commun., 1989, 19, 491–500; (b) V. Mirkhani, S. Tangestaninejad and
L. Alipanah, Synth. Commun., 2002, 32, 621–626; (c) F. Kazemi, A. R.
Kiasat and S. Ebrahimi, Synth. Commun., 2003, 33, 595–600; (d) N.
Iranpoor, H. Firouzabadi and A. A. Jafari, Phosphorus, Sulfur Silicon
Relat. Elem., 2005, 180, 1809–1814.
16 N. Iranpoor and B. Zeynizadeh, Synth. Commun., 1998, 28, 3913–3918.
17 S. Tangestaninejad and V. Mirkhani, Synth. Commun., 1999, 29, 2079–
2083.
18 I. Mohammadpoor-Baltork and A. R. Khosropour, Molecules, 2001,
6, 996–1000.
Conclusions
19 K. Surendra, N. S. Krishnaveni and K. R. Rao, Tetrahedron Lett., 2004,
45, 6523–6526.
We have synthesized and fully characterized five new members
of the thiirane family, along with several key 1,3-oxathiolan-2-
ylidene urea intermediates in the uncatalyzed reactions of epoxides
20 T. H. Chan and J. R. Finkenbine, J. Am. Chem. Soc., 1972, 94, 2880–
2882.
21 T. Takido, Y. Kobayashi and K. Itabashi, Synthesis, 1986, 779–780.
22 N. Iranpoor and F. Kazemi, Synthesis, 1996, 821–822.
23 N. Iranpoor and F. Kazemi, Tetrahedron, 1997, 53, 11377–11382.
24 B. Yadollahi, S. Tangestaninejad and M. H. Habibi, Synth. Commun.,
2005, 34, 2823–2827.
with NH4 SCN- in water at ambient temperature. Although
+
our protocol is restricted to epoxides that are liquid at room
temperature, we have demonstrated the first synthesis of 2,2,3,3-
tetramethylthiirane (2p) as an representative of tetrasubstituted
thiiranes from the corresponding oxirane. In terms of mechanism,
we were able to confirm mechanistic proposals and our preceding
computational analysis by isolation and characterization of eight
key intermediates. Water is the essential ingredient of this reaction
because it stabilizes some of the rather high-lying transition
structures on the one hand and because it helps generate carbon
dioxide and ammonia as the exergonic driving force on the other.
25 B. Das, V. S. Reddy and M. Krishnaiah, Tetrahedron Lett., 2006, 47,
8471–8473.
26 J. S. Yadav, B. V. S. Reddy, C. S. Reddy and K. Rajasekhar, J. Org.
Chem., 2003, 68, 2525–2527.
27 (a) F. Kazemi and A. R. Kiasat, Phosphorus, Sulfur Silicon Relat. Elem.,
2003, 178, 1333–1337; (b) B. Kaboudin and H. Norouzi, Tetrahedron
Lett., 2004, 45, 1283–1285; (c) B. Kaboudin and H. Norouzi, Synthesis,
2004, 2035–2039.
28 F. G. Bordwell and H. M. Andersen, J. Am. Chem. Soc., 1953, 75,
4959–4962.
29 C. M. Kleiner and P. R. Schreiner, Chem. Commun., 2006, 4315–4317.
30 S. Otto and J. B. F. N. Engberts, Org. Biomol. Chem., 2003, 1, 2809–
2820.
Acknowledgements
31 C. Tanford, Science, 1978, 200, 1012–1018.
32 (a) Organic Synthesis in Water, ed. P. A. Grieco, Blackie Academic
and Professional, London, 1998; Comprehensive Organic Reactions
in Aqueous Media, John Wiley & Sons, 2nd edn., 2007; (b) Organic
Reactions in Water, ed. U. M. Lindstro¨m, Blackwell Publishing,
Oxford, 2007.
This work was supported by the Deutsche Forschungsgemein-
schaft (SPP 1179) and the Fonds der Chemischen Industrie.
33 N. T. Southall, K. A. Dill and A. D. J. Haymet, J. Phys. Chem. B, 2002,
References
106, 521–533.
1 (a) H. Staudinger and F. Pfenninger, Ber., 1916, 49, 1941–1951; (b) H.
Staudinger and J. Siegwart, Helv. Chim. Acta, 1920, 3, 833–840.
2 (a) K. Dachlauer, and L. Jackel, 1936, German Patent DE636708;
(b) K. Dachlauer, and L. Jackel, 1936, British Patent 465,662; (c) K.
Dachlauer and L. Jackel, Chem. Abstr., 1936, 30, 7122; (d) K.
Dachlauer, and L. Jackel, 1937, U.S. Patent, 2,094,837 and 2,094,914.
3 (a) C. C. J. Culvenor, W. Davies and K. H. Pausacker, J. Chem. Soc.,
1946, 1050–1052; (b) C. C. J. Culvenor, W. Davies and N. S. Heath,
J. Chem. Soc., 1949, 278–282; (c) C. C. J. Culvenor, W. Davies and N. S.
Heath, J. Chem. Soc., 1949, 282–287; (d) W. Davies and W. E. Savige,
J. Chem. Soc., 1950, 317–322; (e) W. Davies and W. E. Savige, J. Chem.
Soc., 1951, 774–779; (f) C. C. J. Culvenor, W. Davies and W. E. Savige,
J. Chem. Soc., 1952, 4480–4486.
4 Thiiranes and Thiirenes, ed. D. C. Ditter, A. R. Katritzky and C. W. Rees,
Pergamon, Elmsford, N.Y., 1984, vol. 7.
5 E. E. van Tamelen, J. Am. Chem. Soc., 1951, 73, 3444–3448.
6 (a) J. M. Stewart, J. Org. Chem., 1963, 28, 596–598; (b) H. Takeuchi and
Y. Nakajima, J. Chem. Soc. Perkin Trans. 2, 1998, 2441–2446; (c) N.
Iranpoor, H. Firouzabadi and A. A. Jafari, Synth. Commun., 2003, 33,
2321–2327.
34 (a) W. Blokzijl and J. B. F. N. Engberts, Angew. Chem. Int. Ed., 1993,
32, 1545–1579; (b) R. Schmid, Monatsh. Chem., 2001, 132, 1295–1326;
(c) V. V. Yaminskya and E. A. Voglerb, Curr. Opin. Colloid Interface
Sci., 2001, 6, 342–349; (d) L. R. Pratt and A. Pohorille, Chem. Rev.,
2002, 102, 2671–2692.
35 (a) R. Breslow, U. Maitra and D. Rideout, Tetrahedron Lett., 1983, 24,
1901–1904; (b) R. Breslow and U. Maitra, Tetrahedron Lett., 1984, 25,
1239–1240; (c) P. S. Pandey and I. K. Pandey, Tetrahedron Lett., 1997,
38, 7237–7240; (d) S. Otto, G. Boccaletti and J. B. F. N. Engberts, J. Am.
Chem. Soc., 1998, 120, 4238–4239; (e) S. Otto and J. B. F. N. Engberts,
J. Am. Chem. Soc., 1999, 121, 6798–6806; (f) S. Otto and J. B. F. N.
Engberts, Pure Appl. Chem., 2000, 72, 1365–1372; (g) A. Wittkopp
and P. R. Schreiner, in The Chemistry of Dienes and Polyenes, ed.
Z. Rappoport, John Wiley & Sons, Chichester, 2000, vol. 2, pp. 1029–
1088; (h) P. R. Schreiner, A. A. Fokin, O. Lauenstein, Y. Okamoto,
T. Wakita, C. Rinderspacher, G. H. Robinson, J. K. Vohs and C. F.
Campana, J. Am. Chem. Soc., 2002, 124, 13348–13349; (i) A. Wittkopp
and P. R. Schreiner, Chem. Eur. J., 2003, 9, 407–414.
36 F. Joo´, Acc. Chem. Res., 2002, 35, 738–745.
37 (a) P. J. Baricelli, E. Lujano, M. Modron˜o, A. C. Marrero, Y. M. Garc´ıa,
A. Fuentes and R. A. Sa´nchez-Delgado, J. Organomet. Chem., 2004,
689, 3782–3792; (b) P. J. Baricelli, E. Lujano, M. Rodr´ıguez, A. Fuentes
and R. A. Sa´nchez-Delgado, Appl. Catal. A, 2004, 263, 187–191.
38 C. Na´jera, J. Gil-Molto´, S. Karlstro¨m and L. R. Falvello, Org. Lett.,
2003, 5, 1451–1454.
7 H. R. Snyder, J. M. Stewart and J. B. Ziegler, J. Am. Chem. Soc., 1947,
69, 2672–2674.
8 N. Spassky and P. Sigwalt, Tetrahedron Lett., 1968, 9, 3541–3544.
9 (a) N. Spassky and P. Sigwalt, Eur. Polym. J., 1972, 7, 7–16; (b) R. P.
Quirk, M. Ocampo, M. J. Polce and C. Wesdemiotis, Macromolecules,
2007, 40, 2352–2360.
39 S. J. Connon, M. Rivard, M. Zaja and S. Blechert, Adv. Synth. Catal.,
2003, 345, 572–575.
40 (a) A. Masuyama, K. Fukuoka, N. Katsuyama and M. Nojima,
Langmuir, 2004, 20, 82–89; (b) A. Masuyama, T. Yamaguchi, M. Abe
and M. Nojima, Tetrahedron Lett., 2005, 46, 213–216; (c) W. Zhuang,
M. Marigo and K. A. Jørgensen, Org. Biomol. Chem., 2005, 3, 3883–
3885.
10 E. Vedejs and G. A. Krafft, Tetrahedron, 1982, 38, 2857–2881.
11 K. Candela, R. Fellous, D. Joulain and R. Faure, Flavour Fragr. J.,
2003, 18, 52–56.
12 N. Iranpoor, B. Tamami and M. Shekarriz, Synth. Commun., 1999, 29,
3313–3321.
13 (a) B. Tamami and K. P. Borujeny, Synth. Commun., 2004, 34, 65–70;
(b) K. P. Borujeni, Synth. Commun., 2005, 35, 2575–2579.
14 A. Bellomo and D. Gonzalez, Tetrahedron Lett., 2007, 48, 3047–3051.
41 Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel,
G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr.,
1402 | Org. Biomol. Chem., 2009, 7, 1397–1403
This journal is
The Royal Society of Chemistry 2009
©