Please do not adjust margins
RSC Advances
Page 5 of 6
DOI: 10.1039/C6RA07786B
Journal Name
ARTICLE
Chem., Int. Ed., 2011, 50, 8114-8117; Angew. Chem., 2011,
123, 8264-8267. (d) T. Fujihara, T. Xu, K. Semba, J. Terao, Y.
Tsuji, Angew. Chem., Int. Ed., 2011, 50, 523-527; Angew.
Chem., 2011, 123, 543-547. (e) W.-Z. Zhang, W.-J. Li, X. Zhang,
H. Zhou, X.-B. Lu, Org. Lett., 2010, 12, 4748-4751. (f) L. Zhang,
General procedure for CMP-IPr(CuCl) catalyzed hydrosilylation of
CO2 with (EtO)3SiH. In a glovebox, a 5 mL vial was charged with
CMP-IPr(CuCl) (21.5 mg, 10 mol %), NaOtBu (3.5 mg, 12 mol%),
(EtO)3SiH (49.2 mg, 0.3 mmol) and C6D6 (1.5 mL) respectively.
After 10 minutes stirring at room temperature, the resulting
mixture was transferred from glovebox into a 100 mL Schlenk
flask with a CO2 balloon. The reaction was carried out at room
temperature for 10 hours with continuous stirring. Then, the
yield was determined by 1H NMR of the crude reaction mixture.
J. Cheng, B. Carry, Z. Hou, J. Am. Chem. Soc., 2012, 134
14314-14317.
,
8
9
(a) D. S. Laitar, P. Muller, J. P. Sadighi, J. Am. Chem. Soc.,
2005, 127, 17196-17197. (b) C. Kleeberg, M. S. Cheung, Z. Lin,
T. B. Marder, J. Am. Chem. Soc., 2011, 133, 19060-19063.
(a) L. Zhang, J. Cheng, Z. Hou, Chem. Commun., 2013, 49
,
5
(yield: 91.7%). 1H NMR (400 MHz, C6D6): δ 7.71 (s, 1H), 3.84
4782-4784. (b) R. Shintani, K. Nozaki, Organometallics, 2013,
32, 2459-2462.
10 D. Yu, Y. Zhang, PNAS, 2010, 107, 20184-20189.
11 Y. Yang, R. M. Rioux, Green Chem., 2014, 16, 3916-3925.
12 A. Burgun, R. S. Crees, M. L. Cole, C. J. Doonan, C. J. Sumby,
Chem. Commun., 2014, 50, 11760-11763.
13 (a) J.-X. Jiang, F. Su, A. Trewin, C. D. Wood, N. L. Campbell, H.
Niu, C. Dickinson, A. Y. Ganin, M. J. Rosseinsky, Y. Z. Khimyak,
A. I. Cooper, Angew. Chem., Int. Ed., 2007, 46, 8574-8578;
Angew. Chem., 2007, 119, 8728-8732. (b) J.-X. Jiang, F. Su, A.
Trewin, C. D. Wood, H. Niu, J. T. A. Jones, Y. Z. Khimyak, A. I.
Cooper, J. Am. Chem. Soc., 2008, 130, 7710-7720. (c) R.
Dawson, A. Laybourn, Y. Z. Khimyak, D. J. Adams, A. I. Cooper,
Macromolecules, 2010, 43, 8524-8530. (d) D. Wu, F. Xu, B.
(q, J = 6.9 Hz, 6H), 1.10 (t, J = 6.9 Hz, 9H). 13C NMR (100 MHz,
CDCl3): 158.21, 60.15, 18.02.
Acknowledgements
This work is supported by National Natural Science Foundation
of China (Grant No. 21402021), the Program for Changjiang
Scholars and Innovative Research Team in University
(IRT13008). X.-B. Lu gratefully acknowledges the Chang Jiang
Scholars Program (No. T2011056) from Ministry of Education,
People’s Republic of China.
Sun, R. Fu, H. He, K. Matyjaszewski, Chem. Rev., 2012, 112
,
3959-4015.
14 (a) L. Chen, Y. Yang, D. Jiang, J. Am. Chem. Soc., 2010, 132
,
Notes and references
9138-9143. (b) J.-X. Jiang, C. Wang, A. Laybourn, T. Hasell, R.
Clowes, Y. Z. Khimyak, J. Xiao, S. J. Higgins, D. J. Adams, A. I.
Cooper. Angew. Chem., Int. Ed., 2011, 50, 1072-1075; Angew.
Chem., 2011, 123, 1104-1107. (c) H. C. Cho, H. S. Lee, J. Chun,
1
2
A. J. Arduengo, H. V. Rasika Dias, J. C. Calabrese, F. Davidson,
Organometallics, 1993, 12, 3405-3409.
For review, see: (a) P. L. Arnold, Heteroat. Chem., 2002, 13
S. M. Lee, H. J. Kim, S. U. Son, Chem. Commun., 2011, 47
917-919. (d) C. Zhang, J.-J Wang, Y. Liu, H. Ma, X.-L. Yang, H.-
,
,
,
534-539. (b) S. Díez-González, S. P. Nolan, Synlett., 2007, 14
B. Xu, Chem. Eur. J., 2013, 19, 5004-5008. (e) Y. Xie, T.-T. W,
2158-2167. (c) S. Díez-González, N. Marion, S. P. Nolan,
Chem. Rev., 2009, 109, 3612-3676. (d) J. C. Y. Lin, R. T. W.
Huang, C. S. Lee, A. Bhattacharyya, W. S. Hwang, I. J. B. Lin,
Chem. Rev., 2009, 109, 3561-3598. (e) L. Zhang, Z. Hou, Pure
Appl. Chem., 2012, 48, 1705-1712. (f) L. Zhang, Z. Hou, Chem.
X.-H. Liu, K. Zou, W.-Q. Deng, Nat. Commun., 2013,
(f) Y. Xie, T.-T. W, R.-X. Yang, N.-Y. Huang, K. Zou, W.-Q. Deng,
ChemSusChem, 2014, , 2110-2114. (g) K. K. Tanabe, M. S.
4, 1960.
7
Ferrandon, N. A. Siladke, S. J. Kraft, G. Zhang, J. Niklas, O. G.
Poluektov, S. J. Lopykinski, E. E. Bunel, T. R. Krause, J. T.
Miller, A. S. Hock, S. T. Nguyen, Angew. Chem., Int. Ed., 2014,
53, 12055-12058; Angew. Chem., 2014, 126, 12251-12254.
(h) V. M. Suresh, S. Bonakala, H. S. Atreya, S.
Balasubramanian, T. K. Maji, ACS Appl. Mater. Interfaces,
Sci., 2013, 4, 3395-3403. (g) F. Lazerg, F. Nahra, C. S. J. Cazin,
Coord. Chem. Rev., 2015, 293-294, 48-79.
3
4
5
(a) H. Kaur, F. K. Zinn, E. D. Stevens, S. P. Nolan,
Organometallics, 2004, 23, 1157-1160. (b) S. Díez- González,
H. Kaur, F. K. Zinn, E. D. Stevens, S. P. Nolan, J. Org. Chem.,
2005, 70, 4784-4796.
(a) M. R. Fructos, T. R. Belderrain, M. C. Nicasio, S. P. Nolan,
H. Kaur, M. M. Díaz-Requejo, P. J. Pérez, J. Am. Chem. Soc.,
2004, 126, 10846-10847. (b) B. M. Trost, G. Dong, J. Am.
Chem. Soc., 2006, 128, 6054-6055.
(a) H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem., Int.
Ed., 2001, 40, 2004-2021; Angew. Chem., 2001, 113, 2056-
2075 (b) S. Diez-Gonzalez, E. D. Stevens, S. P. Nolan, Chem.
Commun., 2008, 4747-4749. (c) J.-M. Collinson, J. D. E. T.
2014, 6, 4630-4637.
15 F. Cisnetti, C. Gibard, A. Gautier, J. Organomet. Chem., 2015,
782, 22-30.
16 (a) Z. Zhang, Y. Chen, S. He, J. Zhang, X. Xu, Y. Yang, F.
Nosheen, F. Saleem. W. He, X. Wang, Angew. Chem., Int. Ed.,
2014, 53, 12517-12521; Angew. Chem., 2014, 126, 12725-
12729. (b) H. Furukawa, F. Gándara, Y.-B. Zhang, J. Jiang, W.
L. Queen, M. R. Hudson, O. M. Yaghi, J. Am. Chem. Soc., 2014,
136, 4369-4381.
17 H. Zhou, Y.-B. Wang, ChemCatChem, 2014, 6, 2512.
Wilton-Ely, S. Díez-González, Chem. Commun., 2013, 49
11358-11360.
,
18 (a) S. Zhang, Y. Chen, F. Li, X. Lu, W. Dai, R. Mori, Catal. Today,
2006, 115, 61-69. (b) X.-B. Lu, D. J. Darensbourg, Chem. Soc.
Rev., 2012, 441, 1462-1484. (c) A. M. Appel, J. E. Bercaw, A. B.
Bocarsly, H. Dobbek, D. L. DuBois, M. Dupuis, J. G. Ferry, E.
Fujita, R. Hille, P. J. A. Kenis, C. A. Kerfeld, R. H. Morris, C. H. F.
Peden, A. R. Portis, S. W. Ragsdale, T. B. Rauchfuss, J. N. H.
Reek, L. C. Seefeldt, R. K. Thauer, G. L. Waldrop, Chem. Rev.,
2013, 113, 6621-6658. (d) A. Dibenedetto, A. Angelini, P.
Stufano, J. Chem. Technol. Biotechnol., 2014, 89, 334-353. (e)
G. Fiorani, W. Guo. A. W. Kleij, Green Chem., 2015, 17, 1375-
6
7
(a) S. Tominaga, Y. Oi, T. Kato, D. K. An, S. Okamoto,
Tetrahedron Lett., 2004, 45, 5585-5588. (b) K.-s. Lee, M. K.
Brown, A. W. Hird, A. H. Hoveyda, J. Am. Chem. Soc., 2006,
128, 7182-7184. (c) D. Martin, S. Kehrli, M. d’Augustin, H.
Clavier, M. Mauduit, A. Alexakis, J. Am. Chem. Soc., 2006,
128, 8416-8417. (d) Brown, M. K.; May, T. L.; Baxter, C. A.;
Hoveyda, A. H. Angew. Chem., Int. Ed., 2007, 46, 1097-1100;
Angew. Chem. 2007, 119, 1115-1118.
(a) T. Ohishi, M. Nishiura, Z. Hou, Angew. Chem., Int. Ed.,
2008, 47, 5792-5795; Angew. Chem., 2008, 120, 5876-5879.
(b) L. Zhang, J. Cheng, T. Ohishi, Z. Hou, Angew. Chem., Int.
Ed., 2010, 49, 8670-8673; Angew. Chem., 2010, 122, 8852-
8855. (c) T. Ohishi, L. Zhang, M. Nishiura, Z. Hou, Angew.
1389. (f) B. Yu, L.-N. He, ChemSusChem, 2015, 8, 52-62.
19 N. P. Mankad, D. S. Laitar, J. P. Sadighi, Organometallics,
2004, 23, 3369-3371.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins