3018
H.N. Demirtas et al. / Tetrahedron 65 (2009) 3014–3018
ArH and ArOH), 6.70–6.66 (m, 4H, ArH), 4.45 (d, 2H, J¼12.9 Hz,
ArCH2Ar), 4.36 (d, 2H, J¼13.1 Hz, ArCH2Ar), 4.21 (t, 2H, J¼5.7 Hz,
–OCHPh), 3.98–3.88 (m, 4H, –OCH2CH2), 3.66–3.58 (m, 2H,
PhCH2N), 3.54–3.43 (m, 4H, –OCH2CH2), 3.26 (d, 4H, J¼13.1 Hz,
ArCH2Ar), 3.10 (dd, 2H, J1¼5.9 Hz, J2¼5.7 Hz, –CHCH2N), 2.98 (dd,
2H, J1¼5.6 Hz, J2¼5.6 Hz, –CHCH2N), 1.27 (s, 18H, C(CH3)3), 0.83 (s,
Acknowledgements
This work was supported by the Scientific and Technical Re-
search Council of Turkey (TUBITAK–106T091) and Research Foun-
dation of Selçuk University (BAP–06401067).
18H, C(CH3)3); 13C NMR (100 MHz, CDCl3):
d (ppm) 150.1, 149.1,
References and notes
145.5, 140.8, 139.9, 131.5, 131.4, 127.4, 127.2, 127.0, 126.9, 126.8,
126.7, 124.4, 124.3, 124.0, 75.7, 74.2, 65.9, 60.5, 32.8, 30.8, 30.4,
30.0, 28.7; FABMS m/z: (1071.29) [MþNa]þ. Anal. Calcd for
C71H85NO6 (1048.44): C, 81.34%; H, 8.17%; N, 1.34%. Found: C,
81.94%; H, 8.29%; N, 1.28%.
1. (a) Marchi-Artzner, V.; Artzner, F.; Karthaus, O.; Shimomura, M.; Ariga, K.;
Kunitake, T.; Lehn, J.-M. Langmuir 1998, 14, 5164–5171; (b) Bohanon, T. M.;
Caruso, P.-L.; Denzinger, S.; Fink, R.; Mobius, D.; Paulus, W.; Preece, J. A.;
Ringsdorf, H.; Schollmeyer, D. Langmuir 1999, 15, 174–184; (c) Hartley, J. H.;
James, T. D.; Ward, C. J. J. Chem. Soc., Perkin Trans. 1 2000, 3155–3184; (d) Pu, L.
Chem. Rev. 2004, 104, 1687–1716; (e) Ludwig, R. Microchim. Acta 2005, 152,
1–19; (f) Hembury, G. A.; Borovkov, V. V.; Inoue, Y. Chem. Rev. 2008, 108, 1–73;
(g) Homden, D. M.; Redshaw, C. Chem. Rev. 2008, 108, 5086–5130.
2. The Design of Drugs to Macromolecular Targets; Beddell, C. R., Ed.; Wiley:
Chichester, UK, 1992.
4.2.1.2. N-Benzyl-5,11,17,23-tetra-tert-butyl-25,27-dimethoxy-26,28-
(40R,80R-diphenyl-60-aza-30,90,-dioxaundecane)-dioxycalix[4]arene (6).
The crude product was purified by flash chromatography on silica
3. Chromatographic Separations Based on Molecular Recognition; Jinno, K., Ed.;
VCH: Weinheim, 1996.
gel (EtOAc/hexane 1:20) to afford 6 as a white solid. Yield 54%;
25
4. (a) Fitzmaurice, R. J.; Kyne, G. M.; Douheret, D.; Kilburn, J. D. J. Chem. Soc., Perkin
Trans. 1 2002, 841–864; (b) You, J.-S.; Yu, X.-Q.; Zhang, G.-L.; Xiang, Q.-X.; Lan,
J.-B.; Xie, R.-G. Chem. Commun. 2001, 1816–1817; (c) Diederich, F. Angew. Chem.,
Int. Ed. Engl. 1988, 27, 362–386; (d) Meyer, E. A.; Castellano, R. K.; Diederich, F.
Angew. Chem., Int. Ed. 2003, 42, 1210–1250; (e) Hof, F.; Craig, S. L.; Nuckolls, C.;
Rebek, J., Jr. Angew. Chem., Int. Ed. 2002, 41, 1488–1508; (f) Casnati, A.; Sansone,
F.; Ungaro, R. Acc. Chem. Res. 2003, 36, 246–254; (g) de Namor, A. F. D.; Clev-
erley, R. M.; Zapata-Ormachea, M. L. Chem. Rev. 1998, 98, 2495–2525.
5. (a) Vicens, J.; Bo¨hmer, V. Calixarenes: A Versatile Class of Macrocyclic Compounds;
Kluwer: Boston, MA, 1991; (b) Bo¨hmer, V. Angew. Chem., Int. Ed. Engl. 1995, 34,
713–745.
white crystal; mp 115–120 ꢂC; [
a]
D
ꢀ2.5 (c 0.8, CHCl3). IR (KBr):
3024, 2957, 2868, 1482, 1456, 1362, 1202, 1025, 870, 699 cmꢀ1
;
1H
NMR (400 MHz, CDCl3): (ppm) 7.34–7.28 (m, 19H, ArH), 6.90–
d
6.75 (m, 4H, ArH), 4.43 (d, 2H, J¼13.1 Hz, ArCH2Ar), 4.25 (d, 2H,
J¼13.0 Hz, ArCH2Ar), 4.22 (t, 2H, J¼5.7 Hz, –OCHPh), 3.99 (br, 6H,
–OCH3), 3.78 (br, 4H, –OCH2CH2), 3.68–3.62 (m, 2H, PhCH2N),
3.54–3.47 (m, 4H, –OCH2CH2), 3.22 (d, 4H, J¼12.9 Hz, ArCH2Ar),
3.07 (dd, 2H, J1¼5.8 Hz, J2¼5.9 Hz, –CHCH2N), 2.85 (dd, 2H,
J1¼5.5 Hz, J2¼5.6 Hz, –CHCH2N), 1.23 (s, 18H, C(CH3)3), 0.85 (s, 18H,
6. Ikeda, A.; Shinkai, S. Chem. Rev. 1997, 97, 1713–1734.
C(CH3)3); 13C NMR (100 MHz, CDCl3):
d (ppm) 152.4, 150.9, 147.6,
7. (a) Tuntulani, T.; Thavornyutikarn, P.; Poompradub, S.; Jaiboon, N.; Ruang-
pornvisuti, V.; Chaichit, N.; Asfari, Z.; Vicens, J. Tetrahedron 2002, 58, 10277–
10285; (b) Diamond, D.; McKervey, M. A. Chem. Soc. Rev. 1996, 25, 15–24; (c)
Kim, S. K.; Lee, S. H.; Lee, J. Y.; Lee, J. Y.; Bartsch, R. A.; Kim, J. S. J. Am. Chem. Soc.
2004, 126, 16499–16506.
8. Karakucuk, A.; Durmaz, M.; Sirit, A.; Yilmaz, M.; Demir, A. S. Tetrahedron:
Asymmetry 2006, 17, 1963–1968.
9. (a) Sirit, A.; Karakucuk, A.; Memon, S.; Kocabas, E.; Yilmaz, M. Tetrahedron:
Asymmetry 2004, 15, 3595–3600; (b) Sirit, A.; Kocabas, E.; Memon, S.; Kar-
akucuk, A.; Yilmaz, M. Supramol. Chem. 2005, 17, 251–256.
142.4, 138.7, 132.5, 132.1, 128.6, 128.1, 127.9, 127.6, 127.1, 126.9,
125.3, 124.9, 124.3, 76.2, 75.4, 66.5, 61.2, 33.2, 31.2, 30.7, 30.4, 29.2,
22.9; FABMS m/z: (1099.37) [MþNa]þ. Anal. Calcd for C73H89NO6
(1076.49): C, 81.45%; H, 8.33%; N, 1.30%. Found: C, 81.89%; H,
8.54%; N, 1.24%.
10. (a) Kocabas, E.; Karakucuk, A.; Sirit, A.; Yilmaz, M. Tetrahedron: Asymmetry
2006, 17, 1514–1520; (b) Kocabas, E.; Durmaz, M.; Alpaydin, S.; Sirit, A.; Yilmaz,
M. Chirality 2008, 20, 26–34.
4.3. UV–vis spectral measurement
11. (a) Durmaz, M.; Alpaydin, S.; Sirit, A.; Yilmaz, M. Tetrahedron: Asymmetry 2006,
17, 2322–2327; (b) Durmaz, M.; Alpaydin, S.; Sirit, A.; Yilmaz, M. Tetrahedron:
Asymmetry 2007, 18, 900–905.
12. Bozkurt, S.; Durmaz, M.; Yilmaz, M.; Sirit, A. Tetrahedron: Asymmetry 2008, 19,
618–623.
13. (a) Oueslati, I.; Thue´ry, P.; Shkurenko, O.; Suwinska, K.; Harrowfield, J. M.; Abidi,
R.; Vicens, J. Tetrahedron 2007, 63, 62–70; (b) Queslati, I. Tetrahedron 2007, 63,
10840–10851; (c) Banthia, S.; Samanta, A. Org. Biomol. Chem. 2005, 3, 1428–
1434; (d) Kim, J. S.; Shon, O. J.; Ko, J. W.; Cho, M. H.; Yu, I. Y., II; Vicens, J. J. Org.
Chem. 2000, 65, 2386–2392.
14. (a) Prabagaran, N.; Abraham, S.; Sundararajan, G. ARKIVOC 2002, 7, 212–226; (b)
Demirtas, H. N.; Bozkurt, S.; Durmaz, M.; Yilmaz, M.; Sirit, A. Tetrahedron:
Asymmetry 2008, 19, 2020–2025.
The recognition abilities of chiral calix[4]arenes with amino acid
derivatives were determined on the basis of the differential UV
spectrometry in chloroform. The UV–vis spectra were measured at
20, 25, and 30 ꢂC with a thermostated cell compartment by Shi-
madzu 160 UV spectrometer. The same concentrations of guest
solution were added to the sample cell and reference cell (light
path¼1 cm). The association constants were determined at 246 nm.
The concentration of the hosts is 2.0ꢁ10ꢀ4 mol dmꢀ3 with the
concentration of added guest increasing between 1.0 and
9.0ꢁ10ꢀ3 mol dmꢀ3
.
15. (a) Gutsche, C. D. Acc. Chem. Res. 1983, 16, 161–170; (b) Gutsche, C. D. In
Calixarenes Revisited; Stoddart, J. F., Ed.; The Royal Society of Chemistry:
Cambridge, 1998.
4.4. Evaluation of the stoichiometric ratio of the host–guest
complex (Job plots)
16. (a) Mutihac, L.; Buschmann, H.-J.; Tudorescu, A.; Mutihac, R. J. Inclusion Phenom.
Macrocyclic Chem. 2003, 47, 123–128; (b) Mutihac, L.; Buschmann, H.-J.; Muti-
hac, R.-C.; Schollmeyer, E. J. Inclusion Phenom. Macrocyclic Chem. 2005, 51, 1–10.
17. (a) Arnecke, R.; Bo¨hmer, V.; Cacciapaglia, R.; Cort, A. D.; Mandolini, L. Tetrahe-
dron 1997, 53, 4901–4908; (b) Meadows, E. S.; De Wall, S. L.; Barbour, L. J.;
Gokel, G. W. J. Am. Chem. Soc. 2001, 123, 3092–3107.
The stoichiometry of the complex between chiral hosts 5–8 and
enantiomers of amino acid methyl esters was determined by
a continuous-variation plot (Job plot).21 Stock solutions of hosts
(7.5 mM) and guests (3 mM) in CHCl3 were prepared. In ten 2.5-mL
flasks, a portion of the host and guest solutions was added in such
a way that their ratio changed from 0 to 1, keeping the total volume
to 2.5 mL and the total concentration to 0.3 mM. The UV–vis spectra
for each sample were measured by spectrometer.
18. (a) Ogasahara, K.; Hirose, K.; Tobe, Y.; Naemura, K. J. Chem. Soc., Perkin Trans. 1
´
1997, 3227–3236; (b) Mohammed-Ziegler, I.; Poor, B.; Kubinyi, M.; Grofcsik, A.;
Gru¨ n, A.; Bitter, I. J. Mol. Struct. 2003, 650, 39–44.
19. Benesi, H. A.; Hildebrand, J. H. J. Am. Chem. Soc. 1949, 71, 2703–2707.
20. (a) Li, Z.-T.; Ji, G.-Z.; Zhao, C.-X.; Yuan, S.-D.; Ding, H.; Huang, C.; Du, A.-L.; Wei,
M. J. Org. Chem. 1999, 64, 3572–3584; (b) Kerdpaiboon, N.; Tomapatanaget, B.;
Chailapakul, O.; Tuntulani, T. J. Org. Chem. 2005, 70, 4797–4804.
21. Job, P. Ann. Chim. (Paris) 1928, 9, 113–203.