Page 11 of 13
The Journal of Organic Chemistry
of fluorinated amino acid derivatives through late-stage deoxyfluorina-
C.; Leroux, F. R. A General Approach to (Trifluoromethoxy)pyridines:
First X-ray Structure Determinations and Quantum Chemistry Studies.
Eur. J. Org. Chem. 2010, 6043–6066. (g) Umemoto, T.; Singh, R. P.;
Xu, Y.; Saito, N. Discovery of 4-tert-Butyl-2,6-dimethylphenylsulfur
Trifluoride as a Deoxofluorinating Agent with High Thermal Stability
as Well as Unusual Resistance to Aqueous Hydrolysis, and Its Diverse
Fluorination Capabilities Including Deoxofluoro-Arylsulfinylation
with High Stereoselectivity. J. Am. Chem. Soc. 2010, 132, 18199–
18205.
(10) For selected reviews of fluoroalkylation of alcohols and phenols,
see; (a) Tlili, A.; Toulgoat, F.; Billard, T. Synthetic Approaches to Tri-
fluoromethoxy‐Substituted Compounds. Angew. Chem. Int. Ed. 2016,
55, 11726–11735; Angew. Chem. 2016, 128, 11900–11909. (b) Lee, K.
N.; Lee, J. W.; Ngai, M.-Y. Catalytic trifluoromethoxylation reactions.
Tetrahedron 2018, 74, 7127–7135. (c) Zhang, X. T.; Tang, P. Recent
advances in new trifluoromethoxylation reagents. Sci. China Chem.
2019, 62, 525–532. (d) Lee, J. W.; Lee, K. N.; Ngai, M.-Y. Synthesis
of Tri‐ and Difluoromethoxylated Compounds by Visible‐Light Photo-
redox Catalysis. Angew. Chem. Int. Ed. 2019, 58, 11171–11181. and
references cited therein.
(11) For synthetic examples of synthesizing hetero ArOCF3, see; (a)
Liang, A.; Han, S.; Liu, Z.; Wang, L.; Li, J.; Zou, D.; Wu, Y.; Wu, Y.
Regioselective Synthesis of N‐Heteroaromatic Trifluoromethoxy Com-
pounds by Direct O−CF3 Bond Formation. Chem. - Eur. J. 2016, 22,
5102–5106. (b) Zhang, Q.-W.; Hartwig, J. F. Synthesis of heteroaro-
matic trifluoromethyl ethers with trifluoromethyl triflate as the source
of the trifluoromethoxy group. Chem. Commun. 2018, 54, 10124–
10127. Ref. 5 and 7 also showed several examples of heteroaryl trifluo-
romethyl ethers. Although trifluoromethylation of 2-hydroxypyridine
derivatives has been demonstrated in Ref. 11a, the trifluoromethylation
of phenols by the Togni reagent usually proceeds at carbon atom in-
stead of oxygen atom, see; (c) Stanek, K.; Koller, R.; Togni, A. Reac-
tivity of a 10-I-3 Hypervalent Iodine Trifluoromethylation Reagent
With Phenols. J. Org. Chem. 2008, 73, 7678–7685.
tions. Tetrahedron 2018, 74, 6367–6418. and references cited therein.
(3) (a) Serfaty, I.; Hodgins, T.; McBee, E. Halogen-containing sub-
stituents. II. Methoxy system. Reactivity parameters. Charge distribu-
tion and conformation of the anisoles. J. Org. Chem. 1972, 37, 2651–
2655. (b) Herkes, F. E. Halogenation of trifluoromethoxy and bis(tri-
fluoromethoxy)benzene. J. Fluorine Chem. 1977, 9, 113–126. (c)
Rose-Munch, F.; Khourzom, R.; Djukic, J.-P.; Rose, E.; Langlois, B.;
Vaisserman, J. Etude conformationnelle du complexe η6-(4-(trifluoro-
méthoxy)aniline)tricarbonylchrome. J. Organomet. Chem. 1994, 470,
131–135. (d) Federsel, D.; Herrmann, A.; Christen, D.; Sander, S.;
Willner, H.; Oberhammer, H. Structure and conformation of α,α,α-tri-
fluoroanisol, C6H5OCF3. J. Mol. Struct. 2001, 567, 127–136. (e)
Leroux, F. R.; Manteau, B.; Vors, J.-P.; Pazenok, S. Trifluoromethyl
ethers – synthesis and properties of an unusual substituent. Beilstein J.
Org. Chem. 2008, 4, 13. (f) Iijima, A.; Amii, H. Selective aromatic car-
bon–oxygen bond cleavage of trifluoromethoxyarenes: a trifluorometh-
oxy group as a convertible directing group. Tetrahedron Lett. 2008, 49,
6013–6015.
(4) For example: OCF3 Πx = 1.04, CF3 = 0.88, CH3 = 0.56, OCH3 =
–0.02. See: C. Hansch, A. Leo, Substituent Constants for Correlation
Analysis in Chemistry and Biology, Wiley, New York, 1979, part VII
339.
(5) Liu, J.; Chen, C.; Chu, L.; Chen, Z.; Xu, X.; Qing, F. Silver-
Mediated Oxidative Trifluoromethylation of Phenols: Direct Synthesis
of Aryl Trifluoromethyl Ethers. Angew. Chem. Int. Ed. 2015, 54,
11839–11842.
(6) (a) Huang, C.; Liang, T.; Harada, S.; Lee, E.; Ritter, T. Silver-
Mediated Trifluoromethoxylation of Aryl Stannanes and Arylboronic
Acids. J. Am. Chem. Soc. 2011, 133, 13308–13310. (b) Yang, Y.-M.;
Yao, J.-F.; Yan, W.; Luo, Z.; Tang, Z.-Y. Silver-Mediated Trifluoro-
methoxylation of (Hetero)aryldiazonium Tetrafluoroborates. Org. Lett.
2019, 21, 8003–8007.
(7) (a) Hojczyk, K. N.; Feng, P.; Zhan, C.; Ngai, M. Trifluorometh-
oxylation of Arenes: Synthesis of ortho‐Trifluoromethoxylated Aniline
Derivatives by OCF3 Migration. Angew. Chem. Int. Ed. 2014, 53,
14559–14563. (b) Lee, K.; Lee, J.; Ngai, M.-Y. Synlett 2015, 27, 313–
319. (c) Zheng, W.; Morales‐Rivera, C. A.; Lee, J. W.; Liu, P.; Ngai,
M. Catalytic C−H Trifluoromethoxylation of Arenes and Heteroarenes.
Angew. Chem. Int. Ed. 2018, 57, 9645–9649. (d) Jelier, B. J.; Tripet, P.
F.; Pietrasiak, E.; Franzoni, I.; Jeschke, G.; Togni, A. Angew. Chem.
Int. Ed. 2018, 57, 13784–13789. (e) Yang, S.; Chen, M.; Tang, P. Vis-
ible‐Light Photoredox‐Catalyzed and Copper‐Promoted Trifluoro-
methoxylation of Arenediazonium Tetrafluoroborates. Angew. Chem.
Int. Ed. 2019, 58, 7840–7844.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(12) Sun, W.; Hu, J.; Shi, Y. 1-(Methyldithiocarbonyl)imidazole: A
Reagent of S-Methyldithiocarbonylation. Synlett 1997, 1997, 1279–
1280.
(13) Mohanta, P. K.; Dhar, S.; Samal, S. K.; Ila, H.; Junjappa, H. 1-
(Methyldithiocarbonyl)imidazole: a Useful Thiocarbonyl Transfer Re-
agent for Synthesis of Substituted Thioureas. Tetrahedron 2000, 56,
629–637.
(14) The pKa value of the conjugate acid of the leaving groups of 5,
6, and 7 are 8.4, 6.0, and 4.6 respectively. See; Buncel, E.; Joly, H. A.;
Jones, J. R. Proton transfer from imidazole, benzimidazole, and their 1-
alkyl derivatives. FMO analysis of the effect of methyl and benzo sub-
stitution. Can. J. Chem. 1986, 64, 1240–1245.
(8) (a) Zhang, Q.; Brusoe, A. T.; Mascitti, V.; Hesp, K. D.; Blake-
more, D. C.; Kohrt, J. T.; Hartwig, J. F. Fluorodecarboxylation for the
Synthesis of Trifluoromethyl Aryl Ethers. Angew. Chem. Int. Ed. 2016,
55, 9758–9762. Angew. Chem. 2016, 128, 9910–9914. (b) Zhou, M.;
Ni, C.; He, Z.; Hu, J. Synthesis of Trifluoromethoxylated (Het-
ero)Arenes via OCF3 Migration. Org. Lett. 2016, 18, 3754–3757. (c)
Chatalova-Sazepin, C.; Binayeva, M.; Epifanov, M.; Zhang, W.; Foth,
P.; Amador, C.; Jagdeo, M.; Boswell, B. R.; Sammis, G. M. Xenon
Difluoride Mediated Fluorodecarboxylations for the Syntheses of Di-
and Trifluoromethoxyarenes. Org. Lett. 2016, 18, 4570–4573.
(9) For classical examples of synthetic methods of ArOCF3 using flu-
oride substitution, see; (a) Sheppard, W. A. α-Fluorinated Ethers. I.
Aryl Fluoroalkyl Ethers. J. Org. Chem. 1964, 29, 1–11. (b) Feiring, A.
E. Chemistry in hydrogen fluoride. 7. A novel synthesis of aryl trifluo-
romethyl ethers. J. Org. Chem. 1979, 44, 2907–2910. (c) Kuroboshi,
M.; Suzuki, K.; Hiyama, T. Oxidative desulfurization-fluorination of
xanthates. A convenient synthesis of trifluoromethyl ethers and
difluoro(methylthio)methyl ethers. Tetrahedron Lett. 1992, 33, 4173–
4176. (d) Kanie, K.; Tanaka, Y.; Suzuki, K.; Kuroboshi, M.; Hiyama,
T. A Convenient Synthesis of Trifluoromethyl Ethers by Oxidative
Desulfurization-Fluorination of Dithiocarbonates. Bull. Chem. Soc.
Jpn. 2000, 73, 471–484. (e) Kuroboshi, M.; Kanie, K.; Hiyama, T. Ox-
idative Desulfurization‐Fluorination: A Facile Entry to a Wide Variety
of Organofluorine Compounds Leading to Novel Liquid‐Crystalline
Materials. Adv. Synth. Catal. 2001, 343, 235–250. (f) Manteau, B.;
Genix, P.; Brelot, L.; Vors, J.-P.; Pazenok, S.; Giornal, F.; Leuenberger,
(15) (a) Beaulieu, F.; Beauregard, L.-P.; Courchesne, G.; Couturier,
M.; LaFlamme, F.; L’Heureux, A. Aminodifluorosulfinium Tetra-
fluoroborate Salts as Stable and Crystalline Deoxofluorinating Rea-
gents. Org. Lett. 2009, 11, 5050–5053. (b) L’Heureux, A.; Beaulieu,
F.; Bennett, C.; Bill, D. R.; Clayton, S.; LaFlamme, F.; Mirmehrabi,
M.; Tadayon, S.; Tovell, D.; Couturier, M. Aminodifluorosulfinium
Salts: Selective Fluorination Reagents with Enhanced Thermal Stabil-
ity and Ease of Handling. J. Org. Chem. 2010, 75, 3401–3411.
(16) Kepp, K. P. A Quantitative Scale of Oxophilicity and Thiophi-
licity. Inorg. Chem. 2016, 55, 9461–9470.
(17) Addition of 2 or more equivalents of water totally prevented the
desired trifluoromethylation and caused hydrolysis of xanthate to form
the corresponding phenols. Since all the reactions were conducted un-
der air, catalytic water exists is present. In the case of condition A, 1
equiv of water resulted in better reproducibility than catalytic amount.
(18) ArOCF2Cl and ArOCFCl2 byproducts have been obtained from
several substrates. According to the ref. 11a, the chlorinated products
might be converted to corresponding trifluoromethyl ether by treatment
of SbF3 and catalytic amount of SbCl5.
(19) (a) Moseley, J. D.; Sankey, R. F.; Tang, O. N.; Gilday, J. P. The
Newman–Kwart rearrangement re-evaluated by microwave synthesis.
Tetrahedron 2006, 62, 4685–4689. (b) Lloyd-Jones, G.; Moseley, J.;
Renny, J. Mechanism and Application of the Newman-Kwart O→S Re-
arrangement of O-Aryl Thiocarbamates. Synthesis 2008, 661–689. (c)
Burns, M.; Lloyd-Jones, G. C.; Moseley, J. D.; Renny, J. S. The
ACS Paragon Plus Environment