COMMUNICATION
bis(acetylacetonate),12-19 some bis(o-catecholate) com-
pounds,20,21 a few bimetallic species with bridging alkox-
ides,22-25 two salicylaldehyde complexes,26,27 two bridging
aryloxides,28,29 and one polyoxometallate30 complex.
Previously studied (pseudo)halogen [NiX4]2- complexes
with D2d symmetry have magnetic moments in the range
3.5-4.0 µB. The compounds 1-5 are paramagnetic, with
an average µeff of 3.51 µB for the K2NiX4 species, as
determined by Evans’ method at room temperature.31,32
These values are closest to that for [NiI4]2-, 3.49 µB, and, in
combination with UV-vis data, suggest that the fluorinated
aryloxide and alkoxide ligands are among the stronger
ligands in the “weak-field” manifold. Figgis has termed these
ligands “medium field”33 in which there is more spin-orbit
coupling, and more free-ion-like behavior, consistent with
the Racah parameters obtained experimentally, vide infra.
The UV-vis-near-IR spectra of compounds 2-5 as well
as that of [NiCl4]2- are shown in Figure 3, and their
absorption energies are compared with previously published
data according to the method of Lever34,35 to obtain values
for the Racah parameter B and the ligand-field parameter
Dq. All four spectra of the nickel complexes with fluorinated
ligands show significantly blue-shifted spectra, compared to
[NiCl4]2-, indicating a stronger ligand field. The strongly
electron-withdrawing and reduced π-basic character of the
ligands results in a large ligand-field splitting, as described
by Dq. The large Racah parameter B for 5 indicates strong
interelectronic repulsion and primarily σ-donor character
Figure 3. UV-vis-near-IR spectra of [NiX4]2- species.
Table 1. Electronic Spectral Data and Ligand-Field Parameters
E(ν3)
E(ν2)
B
Dq
[NiX4]2-
(cm-1
)
(cm-1
)
(cm-1
)
(cm-1
)
ref
[Ni(NCO)4]2-
[NiCl4]2-
16 200
14 760
13 320
16 660
16 820
16 000
19 300
9460
7470
6995
511
405
379
877
867
800
1096
311
206
201
502
540
560
427
34, 36
34, 37
34, 37
this work
this work
this work
this work
[NiBr4]2-
[Ni(OArF)4]2-, 2
[Ni(OAr′)4]2-, 3
[Ni(OArF)4]2-, 4
[Ni(ORF)4]2-, 5
9290
10,000
10400
7840
from the ligand. On the basis of these data, we write the
following abbreviated spectrochemical series:
Br < Cl < NCO , OAr′ ∼ OArF < ORF
These data demonstrate that the fluorinated aryloxide and
alkoxide ligands are as strong in ligand-field terms as
fluoride. Unlike fluoride, however, these ligands are much
less prone to bridging, as complexes 1-3 and 5 attest. Thus,
these ligands serve as an electronic equivalent of fluoride
and are therefore expected to stabilize oxidation states for
Ni higher than Ni2+. A cyclic voltammogram (CV) of 5 with
Epa of -0.2 V vs Ag/Ag+ is shown in Figure S5 of the
Supporting Information.
(12) Foxman, B. M.; Mazurek, H. Inorg. Chem. 1979, 18, 113–116.
(13) Soldatov, D. V.; Henegouwen, A. T.; Enright, G. D.; Ratcliffe, C. I.;
Ripmeester, J. A. Inorg. Chem. 2001, 40, 1626–1636.
(14) Cotton, F. A.; Wise, J. J. Inorg. Chem. 1966, 5, 1200–1207.
(15) Qu, Y.; Zhu, H.-L.; You, Z.-L.; Tan, M.-Y. Molecules 2004, 9, 949–
956.
(16) Corain, B.; Del Pra, A.; Filira, F.; Zanotti, G. Inorg. Chem. 1979, 18,
3523–3528.
(17) Usha, K.; Sadashiva, B. K.; Vijayan, K. Mol. Cryst. Liq. Cryst. Sci.
Tech., Sect. A 1994, 241, 91–102.
In summary, several new homoleptic tetrahedral nickelate
complexes [Ni(OAr)4]2- and [Ni(OR)4]2- with extensively
fluorinated aryloxide and alkoxide ligands have been prepared.
Ligand-field studies show that these ligands are best described
as “medium-field” and therefore are well positioned to stabilize
high-oxidation-state molecules for potential use in C-H activa-
tion chemistry because of the ligand field generated and the
highly oxidation-resistant ligands themselves.
(18) Ficker, R.; Hiller, W.; Ossig, A.; Schurig, V. Acta Crystallogr., Sect.
C: Cryst. Struct. Commun. 1996, C52, 543–545.
(19) Doehring, A.; Goddard, R.; Jolly, P. W.; Krueger, C.; Polyakov, V. R.
Inorg. Chem. 1997, 36, 177–183.
(20) Brueckner, C.; Caulder, D. L.; Raymond, K. N. Inorg. Chem. 1998,
37, 6759–6764.
(21) Abakumov, G. A.; Cherkasov, V. K.; Bubnov, M. P.; Ellert, O. G.;
Rakitin, U. V.; Zakharov, L. N.; Struchkov, U. T.; Saf’yanov, U. N.
IzV. Akad. Nauk, Ser. Khim. 1992, 2315–2323.
(22) Barnhart, D. M.; Lingafelter, E. C. Cryst. Struct. Commun. 1982, 11,
733–739.
(23) Kessler, V. G.; Gohil, S.; Parola, S. Dalton Trans. 2003, 544–550.
(24) Obrey, S. J.; Bott, S. G.; Barron, A. R. Inorg. Chem. 2002, 41, 571–
576.
(25) Veith, M.; Kaefer, D.; Koch, J.; May, P.; Stahl, L.; Huch, V. Chem.
Ber. 1992, 125, 1033–1042.
(26) Mounts, R. D.; Fernando, Q. Acta Crystallogr., Sect. B 1974, 30, 542–
543.
(27) Li, Y. G.; Chen, H. J. Acta Crystallogr. 2006, E62, m1038-m1039.
(28) Higgs, T. C.; Spartalian, K.; O’Connor, C. J.; Matzanke, B.; Carrano,
C. J. Inorg. Chem. 1998, 37, 2263–2272.
Acknowledgment. We thank Boston University, NSF
CAREER (Grant CHE-0134817), and ACS-PRF AC-48022
for financial support.
Supporting Information Available: Full experimental details,
tabulated X-ray crystallographic information (Tables S1 and S2)
for compounds 2-6, ORTEPs for compounds 3-6 (Figures
S1-S4), a CV of 5 (Figure S5), and time-of-flight electrospray
ionization mass spectrometry analysis of 4 (Figure S6). This material
(29) Campora, J.; Reyes, M. L.; Mereiter, K. Organometallics 2002, 21,
1014–1016.
(30) Cui, X.-B.; Zheng, S.-T.; Yang, G.-Y. Z. Anorg. Allg. Chem. 2005,
631, 642–644.
(31) Evans, D. F. J. Chem. Soc. 1959, 2003–2005.
(32) Sur, S. K. J. Magn. Reson. 1989, 82, 169–173.
(33) Figgis, B. N. Nature (London) 1958, 182, 1568–1570.
(34) Lever, A. B. P. Inorganic Electronic Spectroscopy; Elsevier: New
York, 1984; p 864.
IC9003593
(36) Forster, D.; Goodgame, D. M. L. J. Chem. Soc. 1964, 2790–2798.
(37) Goodgame, D. M. L.; Goodgame, M.; Cotton, F. A. J. Am. Chem.
Soc. 1961, 83, 4161–4167.
(35) Lever, A. B. P. J. Chem. Educ. 1968, 45, 711–712.
4276 Inorganic Chemistry, Vol. 48, No. 10, 2009