dition with these unsaturated residues can lead to the formation
of Dha adducts, including intramolecular lanthionine cross-
links.5
Switchable Reactivity of Acylated
r, ꢀ-Dehydroamino Ester in the Friedel-Crafts
Alkylation of Indoles by Changing the Lewis
Acid
The indole nucleus is found in a number of biologically active
natural and unnatural compounds, and the synthesis of its
derivatives continues to be an intriguing subject in organic
synthesis.6 Friedel-Crafts (F-C) alkylation of indoles with an
R,ꢀ-unsaturated carbonyl compound such as the Michael ac-
ceptor is a straightforward approach for the synthesis of
substituted indoles. Several conjugate additions of indoles to
various Michael acceptors, some of which are highly enanti-
oselective, have been developed by using either Lewis acids
(LA) or organic catalysts.7
Elena Angelini, Cesarino Balsamini, Francesca Bartoccini,
Simone Lucarini, and Giovanni Piersanti*
Institute of Medicinal Chemistry, UniVersity of Urbino
“Carlo Bo”, Piazza del Rinascimento 6, 61029 Urbino (PU),
Italy
ReceiVed April 24, 2008
Although remarkable achievements have been made using
the F-C alkylation of indole substrates with R,ꢀ-unsaturated
carbonyl compounds, to the best of our knowledge there have
been no reports in which N-acylated dehydroamino esters (R-
amidoacrylates) have been employed.
The potential value of the N-acyl-R,ꢀ-dehydroamino esters
in synthetic chemistry is derived mainly from their ready
availability and unique reactivity.8 The contemporary presence
of acylamino and ester groups on the same carbon of the double
bond can promote the nucleophilic attack at the R and ꢀ
positions (Figure 1), providing R-amino acids that can be readily
transformed into a range of different functionalities, or even
Highly regioselective electrophilic substitution of indoles
with N-acetylated R,ꢀ-dehydroalanine methyl ester, promoted
by different transition metal salts was achieved. The or-
thogonal regioselectivity provides an efficient protocol
toward highly functionalized 3-indolyl-R-amino acids. The
mechanism of the reactions was explored by NMR studies.
(3) For reviews, see: (a) Chatterjee, C.; Paul, M.; Xie, L. L.; van der Donk,
W. A. Chem. ReV. 2005, 105, 633–683. (b) Bonauer, C.; Walenzyk, T.; Ko¨nig,
B. Synthesis 2006, 1, 1–20. For representative examples see: (c) Burrage, S. A.;
Raynham, T.; Brandley, M. Tetrahedron Lett. 1998, 39, 2831–2834. (d) Ferreira,
P. M. T.; Maia, H. L. S.; Monteiro, L. S. Tetrahedron Lett. 1998, 39, 9575–
9578. (e) Miao, Z.; Tam, P. J. Org. Lett. 2000, 2, 3711–3711.
(4) (a) Cotter, P. D.; Hill, C.; Ross, R. P. Nat. ReV. Microbiol. 2005, 3, 777–
788. (b) Cotter, P. D.; Hill, C.; Ross, R. P. Curr. Protein Pept. Sci. 2005, 6,
61–72.
(5) (a) Galonic, D. P.; van der Donk, W. A.; Gin, D. Y. Chem. Eur. J. 2003,
9, 5997–6006. (b) Zhu, Y.; van der Donk, W. A. Org. Lett. 2001, 3, 1189–
1192. (c) Zhu, Y. T.; Gieselman, Y. T.; Zhou, H.; Averin, O.; van der Donk,
W. A. Org. Biomol. Chem. 2003, 1, 3304–3315.
Amino acids and their derivatives are well-known as versatile
building blocks for pharmaceutical applications, as well as
essential starting material for the generation of molecular
diversity.1 Therefore, we have focused our attention on develop-
ing methodologies to generate nonproteinogenic amino acids,2
using readily available N-protected dehydroamino esters, such
as dehydroalanine.
The amino acid dehydroalanine (Dha) is found in a number
of proteins and nonribosomal natural products, and is typically
revealed by the activation and ꢀ-elimination of serine or
cysteine.3 R,ꢀ-Unsaturated amino acids can alter the conforma-
tion, rigidity, and proteolytic susceptibility of the polypeptide
backbone.4 Intra- or intermolecular electrophilic Michael ad-
(6) (a) Sundberg, R. J. Indoles; Academic Press: London, UK, 1996. (b)
Saxton, J. E. Nat. Prod. Rep. 1997, 559–590. (c) Borschberg, H.-J. Curr. Org.
Chem. 2005, 9, 1465–1492. (d) Kleeman, A.; Engel, J.; Kutscher, B.; Reichert,
D. Pharmaceutical Substances, 4th ed.; Thieme: New York, 2001. (e) Cacchi,
S.; Fabrizi, G. Chem. ReV. 2005, 105, 2873–2920.
(7) For reviews see: (a) Jørgensen, K. A. Synthesis 2003, 1117–1125. (b)
Bandini, M.; Melloni, A.; Umani-Ronchi, A. Angew. Chem., Int. Ed. 2004, 43,
550–556.
(8) For representative examples of reactivity of 1, see: Asymmetric
hydrogenation: (a) Kitamura, M.; Tsukamoto, M.; Bessho, Y.; Yoshimura, M.; Kobs,
U.; Widhalm, M.; Noyori, R. J. Am. Chem. Soc. 2002, 124, 6649–6667. Cycload-
dittion: (b) Cativiela, C.; Diaz-de-Villegas, M. D. Tetrahedron Asymmetry 2000,
11, 645–732, Heck reaction. (c) Fairlamb, I. J. S.; Kapdi, A. R.; Lee, A. F.;
McGlacken, G. P.; Weissburger, F.; de Vries, A. H. M.; Schmieder-van de
Vondervoort, L. Chem. Eur. J. 2006, 12, 8750–8761. With thiolates: (d) Sridhar,
P. R.; Prabhu, K. R.; Chandrasekaran, S. Eur. J. Org. Chem. 2004, 4809–4815.
With phosphite: (e) Meyer, F.; Laaziri, A.; Papini, A. M.; Uzieland, J.; Juge`, S.
Tetrahedron 2004, 60, 3593–3597. With enamines: (f) Desmaele, D.; Delarue-
Cochin, S.; Cave´, C.; d’Angelo, J.; Morgant, G. Org. Lett. 2004, 14, 2421–
2424. With trifluoroorganoborate: (g) Navarre, L.; Darses, S.; Genet, J. P. Angew.
Chem., Int. Ed. 2004, 43, 719–723. With boronic acid: (h) Reetz, M. T.; Moulin,
D.; Gosberg, A. Org. Lett. 2001, 25, 4083–4085. With anisole and phenol: (i)
Royo, E.; Lo´pez, P.; Cativiela, C. ARKIVOC 2005, Vi, 46–61. With furan and
pyrrole: (j) de la Hoz, A.; Diaz-Ortiz, A.; Gomez, M. V.; Mayoral, J. A.; Moreno,
A.; Sanchez-Migallona, A. M.; Vazquez, E. Tetrahedron 2001, 57, 5421–5428.
Reaction of 1 with indole was also reported, employing Silica-supported LA
(Al,Ti) in conjunction with microwave irradiation, but the polysubstituted bis-
indolyl derivative was the main product.
* Address correspondence to this author. Fax: +39-0722-303313. Phone: +39-
0722-303320.
(1) (a) Gordon, E. M. Combinatorial Chemistry and Molecular DiVersity in
Drug DiscoVery; Gordon, E. M., Kerwin, J. F., Jr., Eds.; Wiley-Liss: New York,
1998. (b) Sawyer, T. K. Structure Based Drug Design: Disease, Targets,
Techniques and DeVelopment; (Ed.: Veerapandian P), Marcel Dekker: New York,
1997, p 559.
(2) (a) Ballini, R.; Balsamini, C.; Diamantini, G.; Savoretti, N. Synthesis
2005, 7, 1055–1057. (b) Ballini, R.; Balsamini, C.; Bartoccini, F.; Gianotti, M.;
Martinelli, C.; Savoretti, N. Synthesis 2005, 2, 296–300. (c) Balsamini, C.;
Diamantini, G.; Duranti, A.; Spadoni, G.; Tontini, A. Synthesis 1995, 4, 370–
372.
5654 J. Org. Chem. 2008, 73, 5654–5657
10.1021/jo800881u CCC: $40.75 2008 American Chemical Society
Published on Web 06/18/2008