Journal of the American Chemical Society
Page 4 of 5
1
2
3
4
5
6
7
8
9
(g) Wu, B.; Yoshikai, N. Org. Biomol. Chem. 2016, 14, 5402. (h) Cui, Y.ꢀ
M.; Lin, Y.; Xu, L.ꢀW. Cood. Chem. Rev. 2017, 330, 37.
10) (a) Minami, Y.; Hiyama, T. Acc. Chem. Res. 2017, 49, 67. (b)
Minami, Y.; Shiraishi, Y.; Yamada, K.; Hiyama, T. J. Am. Chem. Soc.
2012, 134, 6124. (c) Minami, Y.; Shiraishi, Y.; Kodama, T.; Kanda, M.;
Yamada, K.; Anami, T.; Hiyama, T. Bull. Chem. Soc. Jpn. 2015, 88, 1388.
(d) Minami, Y.; Kodama, T.; Hiyama, T. Angew. Chem. Int. Ed. 2015, 54,
11813. (e) Minami, Y.; Sakai, M.; Anami, T.; Hiyama, T. Angew. Chem.
Int. Ed. 2016, 55, 8701. (f) Minami, Y.; Noguchi, Y.; Yamada, K.; Hiyaꢀ
ma, T. Chem. Lett. 2016, 45, 1210.
11) For selected reports of reactions using alkynyl ethers, see: (a) Gray,
V. J.; Wilden, J. D. Org. Biomol. Chem. 2016, 14, 9695. (b) Hashmi, A. S.
K.; Rudolph, M.; Huck, J.; Frey, W.; Bats, J. W.; Hamzić, M. Angew.
Chem. Int. Ed. 2009, 48, 5848. (c) Miyauchi, Y.; Kobayashi, M.; Tanaka,
K. Angew. Chem. Int. Ed. 2011, 50, 10922. (d) Zhao, W.; Wang, Z.; Sun, J.
Angew. Chem. Int. Ed. 2012, 51, 6209. (e) CabreraꢀPardo, J. R.; Chai, D.
I.; Liu, S.; Mrksich, M.; Kozmin, S. A. Nat. Chem. 2013, 5, 423. (f) Graf,
K.; Rühl, C. L.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew.
Chem. Int. Ed. 2013, 52, 12727. (g) Alford, J. S.; Davies, H. M. L. J. Am.
Chem. Soc. 2014, 136, 10266. (h) Gabig, S.; Haberhauer, G.; Gleiter, R. J.
Am. Chem. Soc. 2015, 137, 1833. (i) Babu, M. H.; Dwivedi, V.; Kant, R.;
Reddy, M. S. Angew. Chem. Int. Ed. 2015, 54, 3783. (j) Shen, W.ꢀB.; Xiao,
X.ꢀY.; Sun, Q.; Zhou, B.; Zhu, X.ꢀQ.; Yan, J.ꢀZ.; Lu, X.; Ye, L.ꢀW. An-
gew. Chem. Int. Ed. 2017, 56, 605.
12) Use of bulkier trialkylphosphines or acetic acid decreased the yield
of 2a. Moreover, catalytic conditions using Pd(OAc)2 and PEt3 afforded
2a in moderate yield (46%). When some Lewis acids such as PtCl2,
AgOTf, and Au(I) complexes were used as a catalyst, no reaction was
observed at any cases.
13) (a) Clot, E.; Eisenstein, O.; Jasim, N.; Macgregor, S. A.; Mcgrady,
J. E.; Perutz, R. N. Acc. Chem. Res. 2011, 44, 333. (b) Clot, E.; Mégret,
C.; Eisenstein, O.; Perutz, R. N. J. Am. Chem. Soc. 2009, 131, 7817. (c)
Evans, M. E.; Burke, C. L.; Yaibuathes, S.; Clot, E.; Eisenstein, O.; Jones,
W. D. J. Am. Chem. Soc. 2009, 131, 13464.
14) Synthesis of silaphenalene using 1ꢀnaphthylhydrosilanes and alꢀ
kynes via C–H bond activation was reported. Tokoro, Y.; Sugita, K.;
Fukuzawa, S. Chem. Eur. J. 2015, 21, 13229.
15) Shen, R.; Chen, T.; Zhao, Y.; Qiu, R.; Zhou, Y.; Yin, S.; Wang, X.;
Goto, M.; Han, L.ꢀB. J. Am. Chem. Soc. 2011, 133, 17037.
16) For isomerization of the alkenyl transition metal complexes, see:
(a) Brady, K. A.; Nile, T. A. J. Organomet. Chem. 1981, 206, 299. (b)
Ojima, I.; Clos, N.; Donovan, R. J.; Ingallina, P. Organometallics 1990, 9,
3127. (c) Murakami, M.; Yoshida, T.; Kawanami S.; Ito, Y. J. Am. Chem.
Soc. 1995, 117, 6408.
17) (a) Lapointe, D.; Fagnou, K. Chem. Lett. 2010, 39, 1118. (b)
Ackermann, L. Chem. Rev. 2011, 111, 1315.
18) Similar mechanism was proposed in the Rhꢀcatalyzed reaction of
two alkynes. Sakabe, K.; Tsurugi, H.; Hirano, K.; Satoh, T.; Miura, M.
Chem. Eur. J. 2010, 16, 445.
19) Fedorov, A.; Toutov, A. A.; Swisher, N. A.; Grubbs, R. H. Chem.
Sci. 2013, 4, 1640.
20) Kuznetsov, A.; Gevorgyan, V. Org. Lett. 2011, 14, 914.
2) For examples of benzosiloles, see: (a) Xu, C.; Wakamiya, A.; Yaꢀ
maguchi, S. Org. Lett. 2004, 6, 3707. (b) Yamaguchi, S.; Xu, C.; Yamada,
H.; Wakamiya, A. J. Organomet. Chem. 2005, 690, 5365. (c) Ilies, L.;
Tsuji, H.; Nakamura, E. Org. Lett. 2009, 11, 3966. (d) Ilies, L.; Sato, Y.;
Mitsui, C.; Tsuji, H.; Nakamura, E. Chem. Asian J. 2010, 5, 1376.
3) (a) Barton, T. J.; Groh, B. L. Organometallics 1985, 4, 575. (b)
Märkl, G.; Berr, K.ꢀP. Tetrahedron Lett. 1992, 33, 1601. (c) Matsuda, T.;
Kadowaki, S.; Murakami, M. Chem. Commun. 2007, 43, 2627. (d) Matsuꢀ
da, T.; Kadowaki, S.; Yamaguchi, Y.; Murakami, M. Chem. Commun.
2008, 44, 2744. (e) Ilies, L.; Tsuji, H.; Sato, Y.; Nakamura, E. J. Am.
Chem. Soc. 2008, 130, 4240. (f) Matsuda, T.; Yamaguchi, T.; Shigeno,
M.; Sato, S.; Murakami, M. Chem. Commun. 2011, 47, 8697. (g) Matsuda,
T.; Ichioka, Y. Org. Biomol. Chem. 2012, 10, 3175. (h) Arii, H.; Nakaꢀ
bayashi, K.; Mochida, K.; Kawashima, T. Molecules 2016, 21, 999.
4) Ouyang, K.; Liang, Y.; Xi, Z. Org. Lett. 2012, 14, 4572.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
5) Matsuda, T.; Yamaguchi, Y.; Murakami, M. Angew. Chem. Int. Ed.
2017, 56, 4328.
6) Teo, W. J.; Wang, C.; Tan, Y. W.; Ge, S. Synlett 2008, 561.
7) (a) Tobisu, M.; Onoe, M.; Kita, Y.; Chatani, N. J. Am. Chem. Soc.
2009, 131, 7506. (b) Shirakawa, E.; Masui, S.; Narui, R.; Watabe, R.;
Ikeda, D.; Hayashi, T. Chem. Commun. 2011, 47, 9714. (c) Liang, Y.;
Geng, W.; Wei, J.; Xi, Z. Angew. Chem. Int. Ed. 2012, 51, 1934. (d) Onoe,
M.; Baba, K.; Kim, Y.; Kita, Y.; Tobisu, M.; Chatani, N. J. Am. Chem.
Soc. 2012, 134, 19477. (e) Meng, T.; Ouyang, K.; Xi, Z. RSC Adv. 2013, 3,
14273. (f) Xu, L.; Zhang, S.; Li, P. Org. Chem. Front. 2015, 2, 459.
8) (a) Vasilyev, A. V.; Walspurger, S.; Haouas, M.; Sommer, J.; Pale,
P.; Rudenko, A. P. Org. Biomol. Chem. 2004, 2, 3483. (b) Marion, N.;
DíeɀꢀGonɀáleɀ, S.; de Frémont, P.; Noble, A. R.; Nolan, S. P. Angew.
Chem. Int. Ed. 2006, 45, 3647. (c) Peng, L.; Zhang, X.; Zhang, S.; Wang,
J. J. Org. Chem. 2007, 72, 1192. (d) Nakanishi, Y.; Miki, K.; Ohe, K.
Tetrahedron 2007, 63, 12138. (e) Reddy, B. V. S.; Reddy, B. B.; Rao, K.
V. R.; Yadav, J. S. Tetrahedron Lett. 2010, 51, 5697. (f) Sanɀ, R.; Miguel,
D.; Rodrígueɀ, F. Angew. Chem. Int. Ed. 2008, 47, 7354. (g) Nun, P.;
Gaillard, S.; Poater, A.; Cavallo, L.; Nolan, S. P. Org. Biomol. Chem.
2011, 9, 101. (h) Zhao, J.; Clark, D. A. Org. Lett. 2012, 14, 1668. (i)
Gasperini, D.; Collado, A.; GomézꢀSuárez, A.; Cordes, D. B.; Slawin, A.
M. Z.; Nolan, S. P. Chem. Eur. J. 2015, 21, 5403.
9) For selected examples of C–C unsaturated bonds as directing groups,
see: (a) Takeuchi, R.; Yasue, H. J. Org. Chem. 1993, 58, 5386. (b) Tanaka,
K.; Fu, G. C. Org. Lett. 2002, 4, 933. (c) Ferreira, E. M.; Stoltz, B. M. J.
Am. Chem. Soc. 2003, 125, 13464. (d) Chernyak, N.; Gevorgyan, V. J. Am.
Chem. Soc. 2008, 130, 5636. (e) Tobisu, M.; Hyodo, I.; Onoe, M.; Chatani,
N. Chem. Commun. 2008, 44, 6013. (f) Gandeepan, P.; Cheng, C.ꢀH. J.
Am. Chem. Soc. 2012, 134, 5738. (g) Claes, P.; Jacobs, J.; Kesteleyn, B.;
Van, T. N.; De Kimpe, N. J. Org. Chem. 2013, 78, 8330. (h) Iitsuka, T.;
Hirano, K.; Satoh, T.; Miura, M. Chem.-Eur. J. 2014, 20, 385. (i) Zhu, C.;
Yang, B.; Jiang, T.; Bäckvall, J.ꢀE. Angew. Chem. Int. Ed. 2015, 54, 9066.
(j) Li, D. Y.; Chen, H. J.; Liu, P. N. Angew. Chem. Int. Ed. 2016, 55, 373.
(k) Qiu, Y.; Yang, B.; Zhu, C.; Bäckvall, J.ꢀE. Chem. Sci. 2017, 8, 616.
ACS Paragon Plus Environment