584
S.-H. Yu, S.-K. Chung / Tetrahedron: Asymmetry 15 (2004) 581–584
Dekker: New York, 1997; (c) Sinay, P. Nature 1999, 398,
377–378; (d) Petitou, M.; Herault, J.-P.; Bernat, A.;
Driguez, P.-A.; Duchaussoy, P.; Lormeau, J.-C.; Herbert,
J.-M. Nature 1999, 398, 417–422; (e) Koeller, K. M.;
Wong, C.-H. Nat. Biotechnol. 2000, 18, 835–841; (f) Dove,
A. Nat. Biotechnol. 2001, 19, 913–917; (g) ÔCarbohydrate
and GlycobiologyÕ: special report in Science, 2001, 291,
2337–2378; (h) Khersonsky, S. M.; Ho, C. M.; Garcia, M.
F.; Chang, Y. T. Curr. Top. Med. Chem. 2003, 3, 617–643.
methyl (1R)-3-oxo-4-cyclohexen-1-carboxylate {deter-
24
D
for small scale reaction and as 90% ee from
mined as 95% ee from ½aꢁ ¼ ꢂ79:7 (c 1.06, CHCl3)
20
½aꢁ ¼ ꢂ75:5 (c 1.05, CHCl3) for large scale reaction,
D
25
D
Enantiomeric purities of
lit. ½aꢁ ¼ þ82:3 (c 1.0, CHCl3) 98% ee for its antipode 24}.
ee) were also determined by 1H NMR (CDCl3) and 19F
D
-4a (ꢀ 90% ee) and -4a (ꢀ80%
L
NMR (CDCl3) analysis of their corresponding O-())-
MTPA esters25
(D L D
-4a0 and -4a0) Compound -4a0: 1H
3. (a) Ogawa, S.; Hirai, K.; Odagiri, T.; Matsunaga, N.;
Yamajaki, T.; Nakajima, A. Eur. J. Org. Chem. 1988,
1099–1109; (b) Ogawa, S.; Ohmura, M.; Hisamatsu, S.
Synthesis 2000, 312–316; (c) Saumi, T. Top. Curr. Chem.
1990, 154, 257–283.
NMR (CDCl3) d 1.83 (td, J ¼ 12:3, 9.5 Hz, 1H), 2.29 (m,
2H), 2.49 (dm, J ¼ 12:0 Hz, 1H), 2.73 (m, 1H), 3.53 (s,
3H), 3.66 (s, 3H), 5.57 (bd, J ¼ 10:1 Hz, 1H), 5.65 (m, 1H),
5.87 (dm, J ¼ 10:1Hz, 1H), 7.35–7.55 (m, 5H), 19F NMR
(CDCl3) d 4.77 (95%). Compound
L
-4a0: 1H NMR
4. Saumi, T.; Ogawa, S. Adv. Carbohydr. Chem. Biochem.
1990, 48, 21–90.
5. McCasland, G. E.; Furuta, S.; Durham, L. J. J. Org.
Chem. 1966, 31, 1516–1521.
(CDCl3) d 1.77 (td, J ¼ 12:1, 9.1 Hz, 1H), 2.29 (m, 2H),
2.40 (dm, J ¼ 12:2 Hz, 1H), 2.73 (m, 1H), 3.53 (s, 3H),
3.61 (s, 3H), 5.62 (m, 1H), 5.70 (bd, J ¼ 10:3 Hz, 1H), 5.93
(dm, J ¼ 10:2 Hz, 1H), 7.35–7.55 (m, 5H), 19F NMR
(CDCl3) d 4.80 (90%).
6. (a) Gomez, A. M.; Moreno, E.; Valverde, S.; Lopez, J. C.
Tetrahedron Lett. 2002, 43, 5559–5562; (b) Gomez, A. M.;
Moreno, E.; Danelon, G. O.; Valverde, S.; Lopez, J. C.
Tetrahedron: Asymmetry 2003, 14, 2961–2974, and refer-
ences therin.
7. (a) Ogawa, S.; Ara, M.; Kondoh, T.; Saitoh, M.; Masuda,
R.; Toyokuni, T.; Suami, T. Bull. Chem. Soc. Jpn. 1980,
53, 1121–1126; (b) Ogawa, S.; Nakamura, K.; Takagaki,
T. Bull. Chem. Soc. Jpn. 1986, 59, 2956–2958; (c) Ogawa,
S.; Tsukiboshi, Y.; Iwasawa, Y.; Suami, T. Carbohydr.
Res. 1985, 136, 77–89.
8. For examples: carba-b-glucose and carba-a-galactose as
mixture (34% and 27% isolated yield), carba-a-mannose
and carba-b-altrose as mixture (29% and 27% isolated
yield), and carba-a-galactose and carba-a-idose as mixture
(29% and 27% isolated yield).
9. (a) Poll, T.; Sobczak, A.; Hartmann, H.; Helmchen, G.
Tetrahedron Lett. 1985, 26, 3095–3098; (b) Marshall, J.
M.; Xie, S. J. Org. Chem. 1995, 60, 7230–7237; (c) Linde,
R. G., II; Egbertson, M.; Coleman, R. G.; Jones, A. B.;
Danishefsky, S. J. J. Org. Chem. 1990, 55, 2771–2776; (d)
Schwartz, H. M.; Wu, W. S.; Marr, P. W.; Jones, J. B. J.
Am. Chem. Soc. 1978, 100, 5199–5203.
10. Kuwahara, S.; Mori, K. Tetrahedron 1990, 46, 8075–8082.
11. Allen, J. V.; Williams, J. M. J. Tetrahedron Lett. 1996, 37,
1859–1862.
12. Preliminary hydrolysis reactions of 4b with Candida
rugosa (CRL; Sigma), Pseudomonas cepacia(PCL; Ama-
no), Novozym 435 (CAL, immobilized lipasae from
Candida antarctica; Novo Nordisk), Lipozyme RM IM
(RML, immobilized lipase from Rhizomucor miehei; Novo
Nordisk) in phosphate buffer (pH 7) resulted in undesired
saponification of the methyl ester.
15. (a) Hori, T.; Sharpless, K. B. J. Org. Chem. 1978, 43,
1689–1697; (b) Bartlett, P. A.; McQuaid, L. A. J. Am.
Chem. Soc. 1984, 106, 7854–7860.
16. (a) Henbest, H. B.; Wilson, R. A. L. J. Chem. Soc. 1957,
1958–1965; (b) Baker, R.; Gibson, C. L.; Swain, C. T.;
Tapolczay, D. T. J. Chem. Soc., Perkin. Trans. 1, 1985,
1509–1516.
17. Schroder, M. Chem. Rev. 1980, 80, 187–213.
18. (a) Takeo, K.; Aspinall, G. O.; Brennan, P. J.; Chatterjee,
D. Carbohydr. Res. 1986, 150, 133–150; (b) Tsvetkov, Y.
E.; Backinowsky, L. V.; Kochetkov, N. K. Carbohydr.
Res. 1989, 193, 75–90; (c) Pozsgay, V.; Glaudemans, C. P.
J.; Robbins, J. B.; Schneerson, R. Carbohydr. Res. 1993,
244, 259–271; (d) Yudina, O. N.; Sherman, A. A.;
Nifantiev, N. E. Carbohydr. Res. 2001, 332, 363–371.
19. Iwasaki, F.; Maki, T.; Onomura, O.; Nakashima, W.;
Matsumura, Y. J. Org. Chem. 2000, 65, 996–1002.
20. (a) Bissemberg, B. B.; Wightman, R. H. Carbohydr. Res.
1980, 81, 187–191; (b) Jain, R. K.; Dubey, R.; Abbas, S.
A.; Matta, K. L. Carbohydr. Res. 1987, 161, 31–37.
21. (a) Chung, S. K.; Kwon, Y.-U.; Chang, Y. T.; Sohn, K.
W.; Shin, J. H.; Park, K. H.; Hong, B. J.; Chung, I.-H.
Bioorg. Med. Chem. 1999, 7, 2577–2589; (b) Chung, S. K.;
Chang, Y. T. J. Chem. Soc., Chem. Commun. 1995, 23, 13–
14; (c) Meek, J. L.; Davidson, F.; Hobbs, F. W., Jr. J. Am.
Chem. Soc. 1988, 110, 2317–2318.
22. trans-Di-axial relationship of the 3-OH of 12b and the 4-
OH of 12a might be a major contributing factor for the
slow equilibrium process observed. Usually benzoyl
migration between cis-1,2-diol or trans and di-equitorial-
1,2-diol of cyclitols in 60% aqueous pyridine reached their
equilibrium in 1 ꢀ 2 h.
13. Preliminary acetylations of 4a showed that Novozym 435
had the best ability to distinguish
the four enzymes tested.12
23. Chang, C.-W. T.; Hui, Y.; Elchert, B. Tetrahedron Lett.
2001, 42, 7019–7023.
L-4a from D-4a among
24. Sakaitani, M.; Rusnak, F.; Quinn, N. R.; Tu, C.; Frigo, T.
B.; Berchtold, G. A.; Walch, C. T. Biochemistry 1990, 29,
6789–6798.
25. Kim, M.-R.; Jung, H.-J.; Min, B.-S.; Oh, S.-R.; Kim,
C.-S.; Ahn, K.-S.; Kang, W.-S.; Lee, H.-K. Phytochemis-
try 2002, 59, 861–865.
14. Although we obtained
reaction (1 mmol scale), enantiomeric excess of
ꢀ90% ee from large scale reaction (150 mmol scale). The
enantiomeric purity of -4a was determined by measuring
the specific rotation of its oxidized compound, that is
D
-4a with ꢀ95% ee from small scale
D
-4a was
D