3154
K. Eastman, P.S. Baran / Tetrahedron 65 (2009) 3149–3154
J¼8.6 Hz, 2H), 7.19 (d, J¼7.3 Hz, 1H), 7.16 (d, J¼8.7 Hz, 2H), 7.07 (t,
J¼7.4 Hz, 1H), 6.78 (t, J¼7.4 Hz, 1H), 6.69 (d, J¼7.6 Hz, 1H), 3.83 (br s,
1H), 3.79 (d, J¼9.2 Hz, 1H), 3.76 (d, J¼9.2 Hz, 1H), 3.74 (ddd, J¼15.6,
10.0, 5.5 Hz, 1H), 3.63 (ddd, J¼15.6, 9.5, 6.1 Hz, 1H), 2.53 (ddd,
J¼15.6, 9.8, 5.7 Hz, 1H), 2.44 (ddd, J¼15.6, 10.0, 5.8 Hz, 1H). 13C NMR
54.0, 52.9, 50.3, 37.5 HRMS (ESI-TOF): calcd for C30H24N2O4 [MþHþ]
477.1809, found 477.1804.
Acknowledgements
(150 MHz, CDCl3):
d 168.1, 150.8, 143.9, 133.9, 132.8, 132.2, 132.0,
Financial support for this work provided by the NSF and Bristol-
Myers Squibb.
128.5, 128.3, 127.8, 124.8, 123.0, 119.2, 110.3, 60.7, 51.9, 36.4, 34.7.
HRMS (ESI-TOF): calcd for C24H19ClN2O2 [MþHþ] 403.1208, found
403.1202.
Table 2 entry 6: prepared according to the general procedure.
Purified on silica gel eluting with 1:1 hexanes/Et2O. Yield: 17 mg,
47%. Physical state: white powder. Rf: 0.32 (silica gel, 1:1 hexane/
Et2O). IR (film) nmax: 3386, 1707 cmꢁ1. 1H NMR (600 MHz, CDCl3):
Supplementary data
Copies of all NMR spectra are included. Supplementary data
associated with this article can be found in the online version, at
d
7.93 (d, J¼8.4 Hz, 1H), 7.81 (d, J¼7.4 Hz,1H), 7.76 (dd, J¼5.4, 3.0 Hz,
2H), 7.71 (d, J¼8.0 Hz, 1H), 7.66 (dd, J¼5.3, 3.0 Hz, 2H), 7.58 (d,
J¼7.6 Hz, 1H), 7.33–7.41 (m, 3H), 7.14 (d, J¼7.7 Hz, 1H), 7.10 (t,
J¼7.7 Hz, 1H), 6.77 (t, J¼7.8 Hz, 1H), 6.74 (d, J¼7.8 Hz, 1H), 4.26 (d,
J¼9.5 Hz, 1H), 4.12 (d, J¼9.5 Hz, 1H), 4.00 (br s, 1H), 3.90 (ddd,
J¼15.1, 10.0 5.0 Hz, 1H), 3.64 (ddd, J¼16.6, 10.1, 6.7 Hz, 1H), 2.64–
References and notes
1. (a) Rogers, E. F.; Snyder, H. R.; Fischer, R. F. J. Am. Chem. Soc. 1952, 74, 1987–
1989; (b) Snyder, H. R.; Fischer, R. F.; Walker, J. F.; Els, H. E.; Nussberger, G. A.
J. Am. Chem. Soc. 1954, 76, 2819–2825; (c) Snyder, H. R.; Fischer, R. F.; Walker,
J. F.; Els, H. E.; Nussberger, G. A. J. Am. Chem. Soc. 1954, 76, 4601–4605; (d)
Snyder, H. R.; Strohmayer, H. F.; Mooney, R. A. J. Am. Chem. Soc. 1958, 80, 3708–
3710; (e) Cava, M. P.; Talapatra, S. K.; Nomura, K.; Weisbach, J. A.; Douglas, B.;
Shoop, E. C. Chem. Ind. 1963, 30, 1242–1243; (f) Rae, I. D.; Rosenberger, M.; Szabo,
A. G.; Willis, C. R.; Yates, P.; Zacharias, D. E.; Jeffrey, G. A.; Douglas, B.; Kirkpatrick,
L. L.; Weisbach, J. A. J. Am. Chem. Soc.1967, 89, 3061–3062; (g) Zacharias, D. E. Acta
Crystallogr., B 1970, 26, 1455–1464; (h) Yates, P.; MacLachlan, F. N.; Rae, I. D.;
Rosenberger, M.; Szabo, A. G.; Sillis, C. R.; Cava, M. P.; Behforouz, M.; Lakshmi-
kantham, M. V.; Zeiger, W. J. Am. Chem. Soc. 1973, 95, 7842–7850.
2. Kam, T.-S.; Tan, S.-J.; Ng, S.-W.; Komiyama, K. Org. Lett. 2008, 10, 3749–3752.
3. Overman, L. E.; Sato, T. Org. Lett. 2007, 9, 5267–5270.
4. Kodanko, J. J.; Hiebert, S.; Peterson, E. A.; Sung, L.; Overman, L. E.; de Moura
Link, V.; Goerck, G. C.; Amador, T. A.; Leal, M. B.; Elisabetsky, E. J. Org. Chem.
2007, 72, 7909–7914.
2.77 (m, 2H). 13C NMR (150 MHz, CDCl3):
d 168.1, 150.6, 141.1, 135.2,
133.7, 133.4, 132.1, 131.0, 129.5, 128.3, 128.2, 125.7, 125.6, 125.3,
125.2, 124.9, 124.8, 123.0, 118.9, 109.9, 58.8, 53.1, 38.7, 34.8. HRMS
(ESI-TOF): calcd for C28H22N2O2 [MþHþ] 419.1754, found 419.1756.
Table 2 entry 7: prepared according to the general procedure.
Purified on silica gel eluting with 5% Et2O in DCM. Yield: 12 mg,
34%. Physical state: colorless semisolid. Rf: 0.38 (silica gel, 2:1
hexane/EtOAc). IR (film) nmax: 3382, 1744, 1711 cmꢁ1
.
1H NMR
(600 MHz, CDCl3): major diastereomer (ratio: 3:2) 7.60–7.66 (m,
d
4H), 7.42 (d, J¼7.4 Hz, 1H), 7.30 (d, J¼8.0 Hz, 2H), 7.04 (t, J¼7.8 Hz,
2H), 6.91 (t, J¼7.5 Hz, 1H), 6.82 (t, J¼7.6 Hz, 1H), 6.63 (t, J¼7.6 Hz,
1H), 6.61 (d, J¼7.6 Hz, 1H), 5.09 (d, J¼11.5 Hz, 1H), 3.83 (br s, 1H),
3.79 (d, J¼9.2 Hz, 1H), 3.67 (s, 3H), 3.62 (d, J¼9.2 Hz, 1H), 3.23 (dd,
J¼15.3, 11.6 Hz, 1H), 3.03 (d, J¼15.2 Hz, 1H). 13C NMR (150 MHz,
5. Nicolaou, K. C.; Majumder, U.; Roche, S. P.; Chen, D. Y.-K. Angew. Chem., Int. Ed.
2007, 46, 4715–4718.
6. Matsumoto, K.; Tokuyama, H.; Fukuyama, T. Synlett 2007, 3137–3140.
7. Barton, D. H. R.; Finet, J.-P.; Giannotti, C.; Halley, F. J. Chem. Soc., Perkin Trans. 1
1987, 241–245.
CDCl3):
d mixture of diastereomers (ratio: 3:2) 169.9, 167.3, 151.2,
8. Eastman, K. J.; Baran, P. S., unpublished results.
133.6, 131.7, 131.66. 131.3, 128.2, 128.16, 128.1, 128.0, 127.98, 126.1,
125.9, 125.6, 125.59, 123.6, 123.0, 122.9, 119.2, 118.7, 110.6, 110.3,
61.6, 57.8, 52.9, 52.6, 51.4, 49.3, 49.28, 36.7, 36.4. HRMS (ESI-TOF):
calcd for C26H22N2O4 [MþHþ] 427.1652, found 427.1651.
9. Ebno¨therand co-workersdemonstrated the formation of an sp2 arylated product,
but not a 3,3-disubstituted indole. The presumed mechanism follows: initial
deprotonation of indole, followed by arylation at C-3, and finally retro-Mannich
to give the observed product. This work does not represent the first example of
the direct arylation of an indole to give a C-3 quaternary center, rather, it was the
‘presumed’ intermediate that served as precedent for the reaction of bis-aryl
iodide salts with indole derivatives. Our work is first to isolate and characterize
C-3 quaternary indolines prepared by reaction of an indole and a bis-aryl iodide.
Ebno¨ther, A.; Niklaus, P.; Su¨ess, R. Helv. Chim. Acta 1969, 629–638.
Table 2 entry 8: prepared according to the general procedure.
Purified on silica gel eluting with 5% Et2O in DCM. Yield: 11 mg,
40%. Physical state: colorless semisolid. Rf: 0.41 (silica gel, 2:1
hexane/EtOAc). IR (film) nmax: 3379, 1743, 1711 cmꢁ1 1H NMR
.
10. (a) Barton, D. H. R.; Blazejewski, J.-C.; Charpiot, B.; Motherwell, W. B. J. Chem.
Soc., Chem. Commun. 1981, 503–504; (b) Barton, D. H. R.; Yadav-Bhantagar, N.;
Blazejewski, J.-C.; Charpoit, B.; Finet, J.-P.; Lester, D. J.; Motherwell, W. B.;
Papoula, M. T. B.; Stanforth, S. P. J. Chem. Soc., Perkin Trans. 1 1985, 2657–2665;
(c) Barton, D. H. R.; Yadav-Bhatnagar, N.; Finet, J.-P.; Khamsi, J.; Motherwell, W.
B.; Stanforth, S. P. Tetrahedron 1987, 43, 323–332; (d) Barton, D. H. R.; Finet, J.-P.;
Giannotti, C. F.; Halley, F. Tetrahedron 1988, 44, 4483–4494; (e) Fedorov, A.;
Combes, S.; Finet, J.-P. Tetrahedron 1999, 55, 1341–1352.
11. (a) Beringer, F. M.; Forgione, P. S.; Yudis, M. D. Tetrahedron 1960, 49–63;
(b) Beringer, F. M.; Galton, S. A.; Huang, S. J. J. Am. Chem. Soc. 1962, 84, 2819–
2823; (c) Beringer, F. M.; Forgione, P. S. J. Org. Chem. 1963, 28, 714–717;
(d) Beringer, F. M.; Daniel, W. J.; Galton, S. A.; Rubin, G. J. Org. Chem. 1966, 31,
4315–4318; (e) Moriarty, R. M.; Vaid, R. K. Synthesis 1990, 431–447; (f) Chen, K.;
Koser, G. F. J. Org. Chem. 1991, 56, 5764–5767; (g) Ryan, J. H.; Stang, P. J. Tetra-
hedron Lett. 1997, 38, 5061–5064; (h) Ochiai, M.; Shu, T.; Nagaoka, T.; Shiro, M. J.
Org. Chem. 1997, 62, 2130–2138; (i) Oh, C. H.; Kim, J. S.; Jung, H. H. J. Org. Chem.
1999, 64, 1338–1340; (j) Ochiai, M.; Kitagawa, Y.; Takayama, N.; Takaoka, Y.;
Shiro, M. J. Am. Chem. Soc. 1999, 121, 9233–9234; (k) Ochiai, M.; Kitagawa, Y.;
Toyonari, M. ARKIVOC 2003, 43–48; (l) Ochiai, M. Top. Curr. Chem. 2003, 224,
5–68; (m) Moriarty, R. M. J. Org. Chem. 2005, 70, 2893–2903; (n) Ozanne-
Beaudenon, A.; Quideau, S. Angew. Chem., Int. Ed. 2005, 44, 7065–7069.
12. Deprez, N. R.; Kalyani, D.; Krause, A.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128,
4972–4973.
(600 MHz, CDCl3):
d major diastereomer (ratio: 3:2) 7.63–7.70 (m,
4H), 7.44 (d, J¼7.7 Hz, 1H), 7.23 (d, J¼7.8 Hz, 2H), 6.98 (d, J¼7.9 Hz,
2H), 6.94 (t, J¼7.9 Hz, 1H), 6.65 (t, J¼7.5 Hz, 1H), 6.64 (d, J¼7.7 Hz,
1H), 5.06 (d, J¼11.5 Hz, 1H), 3.83 (br s, 1H), 3.77 (d, J¼9.5 Hz, 1H),
3.67 (s, 3H), 3.56 (d, J¼9.4 Hz, 1H), 3.17 (dd, J¼15.1, 11.7 Hz, 1H), 3.01
(d, J¼15.2 Hz, 1H). 13C NMR (150 MHz, CDCl3):
d mixture of di-
astereomers (ratio: 3:2) 169.7, 169.6, 167.3, 167.28, 151.1, 149.6,
143.3, 141.4, 134.0, 133.95, 132.0, 131.8, 131.6, 131.4, 130.7, 128.3,
128.24,128.2, 127.7, 127.0, 123.2, 123.0, 119.4, 118.9, 110.7, 110.3, 61.2,
57.4, 53.0, 52.2, 50.9, 49.2, 49.0, 36.6, 36.4. HRMS (ESI-TOF): calcd
for C26H21ClN2O4 [MþHþ] 461.1263, found 461.1260.
Table 2 entry 9: prepared according to the general procedure.
Purified on silica gel eluting with 5% Et2O in DCM. Yield: 13 mg,
47%. Physical state: yellow semisolid. Rf: 0.46 (silica gel, 2:1 hexane/
EtOAc). IR (film) nmax: 3389, 1741, 1711 cmꢁ1 1H NMR (600 MHz,
.
CDCl3):
d
major diastereomer (ratio: 2:1) 7.88 (d, J¼8.3 Hz, 1H),
7.82–7.87 (m, 3H), 7.71–7.77 (m, 3H), 7.65 (d, J¼7.4 Hz, 1H), 7.34–
7.43 (m, 3H), 7.09 (d, J¼7.4 Hz, 1H), 7.06 (t, J¼7.6 Hz, 1H), 6.71 (t,
J¼7.4 Hz, 1H), 6.67 (d, J¼7.8 Hz, 1H), 4.89 (d, J¼10.5 Hz, 1H), 4.04 (d,
J¼10.0 Hz,1H), 3.91 (dd, J¼15.6,10.4 Hz,1H), 3.84 (d, J¼10.0 Hz,1H),
3.76 (br s, 1H), 3.63 (s, 3H), 3.13 (d, J¼15.2 Hz, 1H). 13C NMR
13. Ochiai, M.; Toyonari, M.; Nagaoka, T.; Chen, D.-W.; Kida, M. Tetrahedron Lett.
1997, 38, 6707–6712; When unavailable commercially, bisacetoxy aryl iodides
were prepared in one step according to Skulski’s protocol: Kazmierczak, P.;
Skulski, L.; Kraszkiewicz, L. Molecules 2001, 6, 881–891. All boronic acids used
are commercially available.
14. As it pertains to the conversion from skatole to the unstable indolenine.
15. Experiments with the fully protected tryptophan 30 were conducted with the
(150 MHz, CDCl3):
d major diastereomer (ratio: 2:1) 193.8, 170.3,
use of 2 equiv of the bisaryl
16. Reduction to the indoline is aided by the addition of silica gel.
l
3-iodane.
167.7, 150.6, 135.3, 134.0, 132.0, 130.9, 129.5, 128.5, 128.4, 126.0,
125.9, 125.3, 125.0, 124.94, 124.9, 123.4, 118.8, 110.6, 105.2, 58.6,