404 Crystal Growth & Design, Vol. 10, No. 1, 2010
Cheney et al.
and under acidified (pH = 1) aqueous conditions. The dis-
solution profiles for 2 and 4 achieved concentration levels
similar to lamotrigine in aqueous media, while 3 maintained a
concentration equivalent to the maximum solubility of lamo-
trigine. The average concentrations achieved from 2, 3, 4, and
5 during dissolution measurements from the acidic media
surpassed the levels of pure lamotrigine by ca. 48%, 19%,
18%, and 58%, respectively. In the rat PK study, the serum
concentrations for 3 and 4 were less than pure lamotrigine by
37% and 26%, respectively. 5, however, exhibited an initial
increase in the serum concentration of ca. 66%. After ap-
proximately 3 h, the serum concentration of 5 reduced to a
level similar to that of pure lamotrigine.
The influence of a particular cocrystal former upon solubi-
lity and rat PK was examined. The analysis compared the
solubility of the cocrystal former with the solubility and serum
concentration of the subsequent crystal form. For this data
set, the most soluble cocrystal former did not lead to the most
soluble crystal form. In addition, a comparison of the rat PK
data to the solubility of the crystal forms revealed that the
crystal forms which achieved the greatest aqueous solubility
also reached the highest concentrations in the rat PK data. In
contrast, thesolubilityof the crystalforminthe acidic solution
did not correspond to the PK data. A further analysis showed
that, except for 5, the Tmax for lamotrigine, 3 and 4 (10-12 h)
were significantly longer than the time required for the
equilibrium of solutions in the dissolution studies. This
discrepancy could be rationalized by the fact that serum
concentrations of all crystal forms reached ca. 90% Cmax
within 60 min, which correlated to the dissolution profiles.
The slow increase of serum concentration after 60 min could
be the results of the prolonged absorption of the drug in the
gastrointestinal tract as well as slow metabolism and excre-
tion.
information is available free of charge via the Internet at http://
pubs.acs.org/.
References
.
(1) (a) Gardner, C. R.; Walsh, C. T.; Almarsson, O. Nat. Rev. Drug
Discovery 2004, 3, 926. (b) Vishweshwar, Peddy; McMahon, J. A.; Bis,
J. A.; Zaworotko, M. J. J. Pharm. Sci. 2006, 95, 499. (c) Allen, L. V.;
Popovich, N. G.; Ansel, H. C. Ansel’s Pharmaceutical Dosage Forms
and Drug Delivery Systems, 8th ed.; Lippincott Williams and Wilkins:
New York, 2005; (d) Blagden, N.; de Matas, M.; Gavan, P. T.; York, P.
Adv. Drug Delivery Rev. 2007, 59, 617.
(2) (a) Desiraju, G. R. Crystal Engineering: The Design of Organic
Solids; Elsevier: New York, 1989; (b) Pepinsky, R. Phys. Rev. 1955,
100, 971. (c) Schmidt, G. M. J. Pure Appl. Chem. 1971, 27, 647.
(3) Maddox, J. Nature 1988, 335, 201. Ball, P. Nature 1996, 381, 648.
(4) Dunitz, J. D.; Bernstein, J. Acc. Chem. Res. 1995, 28, 193.
(5) Trask, A. V. Mol. Pharmaceutics 2007, 4, 301.
(6) Noyes, A. A.; Whitney, W. R. J. Am. Chem. Soc. 1897, 19, 930.
(7) Takagi, T.; Ramachandran, C.; Bermejo, M.; Yamashita, S.; Yu,
L. X.; Amidon, G. L. Mol. Pharmaceutics 2006, 3, 631.
(8) Hiten, J. S.; Gunta, S.; Dasharath, M. P.; Chhagan, N. P. Bio-
pharm. Drug Dispos. 2009, 30, 524-531.
(9) Stahl, P. H.; Wermuth, C. G. Handbook of Pharmaceutical Salts:
Properties, Selection, and Use; WILEY-VCH: Zurich, 2002.
(10) Berge, S. M.; Bighley, L. D.; Monkhouse, D. C. J. Pharm. Sci.
1977, 66, 1.
(11) Lipinski, C. A. Am. Pharm. Rev. 2002, 5, 82.
(12) Dublin, C. H. Drug Delivery Technol. 2006, 6, 34.
(13) Juncher, H.; Raaschou, F. Antibiot. Med. Clin. Ther. 1957, 4, 497.
.
(14) (a) Almarsson, O.; Zaworotko, M. J. Chem. Commun. 2004, 1889.
(b) Shan, N.; Zaworotko, M. J. Drug Disc. Today 2008, 13, 440. (c)
Zaworotko, M.; Arora, K. Pharmaceutical co-crystals: A new opportu-
nity in pharmaceutical science for a long-known but little studied class
of compounds. In Polymorphism in Pharmaceutical Solids, 2nd ed.;
Brittain, H. G., Ed.; Informa Healthcare: London, 2009.
(15) Lipinski, C. A. J. Pharmacol. Toxicol. 2000, 44, 235.
(16) Stanton, M. K.; Bak, A. Cryst. Growth Des. 2008, 8, 3856.
(17) Bak, A.; Gore, A.; Yanez, E.; Stanton, M.; Tufekcic, S.; Syed, R.;
Akrami, A.; Rose, M.; Surapaneni, S.; Bostick, T.; King, A.;
Neervannan, S.; Ostovic, D.; Koparkar, A. J. Pharm. Sci. 2008,
97, 3942.
The influence of supramolecular synthon motif upon solu-
bility and PK was also examined. Of the crystal forms where
the solubility and rat PK were measured (3, 4, 5) the only
crystal form that broke the aminopyridine dimer (5) also
achieved the highest concentration in aqueous solution and
rat serum, suggesting that breaking the lamotrigine amino-
pyridine dimer can lead to crystal forms with desirable
physicochemical properties. Therefore, when considering
both aqueous dissolution and animal PK data of the crystal
forms presented herein collectively, 5 exhibited the targeted
physicochemical properties with substantial improvements,
and would be an appropriate candidate for further develop-
ment. Given the promising results of 5 shown in this study, it
must be noted that the successful development of a novel
crystal form of lamotrigine encompasses many factors above
and beyond solubility study and rat PK study. For example,
the crystal form must be proven physically stable during the
accelerated stress testing and downstream processing. In addi-
tion, the crystal form has to be scaled up and further evaluated
by studies including additional PK study using larger animals,
animal toxicity study, and animal efficacy study. All of the
above considerations will be taken into account in the plan-
ning and implementation of the future development of 5.
(18) McNamara, D. P.; Childs, S. L.; Giordano, J.; Iarriccio, A.;
Cassidy, J.; Shet, M. S.; Mannion, R.; O’Donnell, E.; Park, A.
Pharm. Res. 2006, 23, 1888.
(19) (a) Chen, A. M.; Ellison, M. E.; Peresypkin, A.; Wenslow, R. M.;
Variankaval, N.; Savarin, C. G.; Natishan, T. K.; Mathre, D. J.;
Dormer, P. G.; Euler, D. H.; Ball, R. G.; Ye, Z. X.; Wang, Y. L.;
Santos, I. Chem. Commun. 2007, 419; E. (b) Dova; E. Mazurek, J. M.;
Anker, J. Tenofovir disoproxil hemi-fumaric acid co-crystal. WO/2008/
143500, 2008; (c) Hickey, M. B.; Peterson, M. L.; Scoppettuolo, L. A.;
Morrisette, S. L.; Vetter, A.; Guzman, H.; Remenar, J. F.; Zhang, Z.;
.
Tawa, M. D.; Haley, S.; Zaworotko, M. J.; Almarsson, O. Eur. J.
Pharm. Biopharm. 2007, 67, 112. (d) Imamura, M. Cocrystal of
C-glycoside derivative and L-proline. WO 2007/114475 A1, 2007. (e)
.
Peterson, M.; Bourghol Hickey, M.; Oliveira, M.; Almarsson, O.;
Remenar, J. Modafinil compositions. US 2005267209 A1, 2005; (f)
Remenar, J.; MacPhee, M.; Peterson, M.; Morissette, S. L.; Almarsson,
.
O. Novel crystalline forms of conazoles and methods of making and
using the same, WO/2005/092884, 2005.
(20) Reutzel-Edens, S. M.; Bush, J. K.; Magee, P. A.; Stephenson,
G. A.; Byrn, S. R. Cryst. Growth Des. 2003, 3, 897.
(21) Khankari, R. K.; Grant, D. J. W. Thermochim. Acta 1995, 248, 61.
(22) (a) Hickey, M. B.; Peterson, M. L.; Manas, E. S.; Alvarez, J.;
.
Haeffner, F.; Almarsson, O. J. Pharm. Sci. 2007, 96, 1090. (b)
Kobayashi, Y.; Ito, S.; Itai, S.; Yamamoto, K. Int. J. Pharm. 2000, 193,
137. (c) Salole, E. G.; Alsarraj, F. A. Drug Dev. Ind. Pharm. 1985, 11, 855.
(d) Pudipeddi, M.; Serajuddin, A. T. M. J. Pharm. Sci. 2005, 94, 929.
(23) (a) Bowden, C. L. Expert Opin. Pharmacol. 2002, 3, 1513. (b) Goa,
K. L.; Ross, S. R.; Chrisp, P. Drugs 1993, 46, 152.
(24) Motte, J.; Trevathan, E.; Arvidsson, J. F. V.; Barrera, M. N.;
Mullens, E. L.; Manasco, P.; Dulac, O.; Mai, J.; Billard, C.; Vallee,
L.; Oberarztin, F.; Ried, S.; Christe, W.; Rating, D.; Vigevano, F.;
Tassinari, C.; Bernardina, B. D.; Majoie, H.; Weber, A.; Laegreid,
L.; EegOlofsson, O.; Bermejo, M.; Martinez, A.; Castello, J. C.;
Serra, M. T. I.; Kirkham, F.; Noronha, M.; Wallace, S.; Black, A.;
Berkovic, S.; Pedespan, J.; Echenne, B.; Pinsard, N.; Parain, D.;
Acknowledgment. We thank Mr. Raymond Houck for
stimulating discussions and valuable input to the project.
Supporting Information Available: Characterization results of
lamotrigine crystal forms, refcodes from the CSD statistical analy-
sis, and more detailed experimental results of dissolution study. This