Table 4
Warren group methodology with different phosphine derivatives,
requires preparation via the phosphine oxide and interconversion
of derivatives as a necessary step. These observations do suggest
that it would be possible to perform reactions involving phosphine
oxides in the presence of a phosphine borane or a phosphine
sulfide. This could potentially find applications in regioselective
alkylation of phosphine oxides in the presence of phosphine
boranes or phosphine sulfides, for example in the Horner–Wittig
olefination,38 the phosphine oxide mediated cyclopropanation
cascade reaction11,39 or the synthesis of non-symmetric chiral bis-
phosphine ligands for metal catalysis.40
Uncoordinated ground states
Relative energya/
Coordinated ground states
Relative energya/
X
Structure
kJ mol-1
Structure
kJ mol-1
O
S
79
80
0
-4.5
+1.4
82
83
84
-120.6
-104.6
-82.7
BH3 81
a Energies are all relative to the energy of formation of complex 79 from
oxide 49.
from a reduced build-up of strain in the transition state of the
sulfide due to a longer P–S bond length, but it is known that the
thio-carbonyl compounds can be more acidic than their oxygen
counterparts.37
Acknowledgements
We thank Dr John Davies for crystallography and the EPSRC for
financial assistance towards the purchase of the Nonius CCD
diffractometer. DSP thanks Torben & Alice Frimodts Fond,
Brødrene Hartmanns Fond and Direktør Ib Henriksens Fond for
financial support.
A final set of calculations highlights how significant the
coordination of lithium in the three types of phosphines changes
the overall stability of the alkyllithium products (Fig. 2). In each
case the energy (relative to the respective starting material 49–51)
of the simple unsolvated alkyllithium was calculated for two con-
formations. The two conformations are ground-state structures
involving either close contact of the lithium to the oxygen, sulfur
or borane, or no close contact in an anti-arrangement around
the phosphorus–carbon bond. Table 4 shows that the energies of
lithiation to give the uncoordinated compounds 79–81 are similar.
However once the C–P bond is rotated and the lithium coordinates
to the oxygen, sulfur or borane (82–84), the oxide is significantly
more stable than the sulfide, which is in turn more stable than the
borane. These results are similar to those calculated above, and
again emphasise the large contribution that the oxygen–lithium
interaction makes to the chemistry of phosphine oxides.5
References
1 P. Wallace and S. Warren, Tetrahedron Lett., 1985, 26, 5713.
2 P. Wallace and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1988, 2971.
3 A. Nelson and S. Warren, Tetrahedron Lett., 1996, 37, 1501.
4 A. Nelson and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1999, 3425.
5 C. Clarke, S. Foussat, D. J. Fox, D. S. Pedersen and S. Warren, Org.
Biomol. Chem., 2009, DOI: 10.1039/b817433d.
6 M. Yoshifuji, T. Ishizuka, Y. J. Choi and N. Inamoto, Tetrahedron Lett.,
1984, 25, 553.
7 A. R. Muci, K. R. Campos and D. A. Evans, J. Am. Chem. Soc., 1995,
117, 9075.
8 F. Mathey and F. Mercier, Tetrahedron Lett., 1979, 3081.
9 T. Imamoto, T. Oshiki, T. Onozawa, T. Kusumoto and K. Sato, J. Am.
Chem. Soc., 1990, 112, 5244.
10 N. Feeder, G. Hutton and S. Warren, Tetrahedron Lett., 1994, 35, 5911.
11 T. Boesen, D. J. Fox, W. Galloway, D. S. Pedersen, C. R. Tyzack and S.
Warren, Org. Biomol. Chem., 2005, 3, 630.
12 H. Brisset, Y. Gourdel, P. Pellon and M. Lecorre, Tetrahedron Lett.,
1993, 34, 4523.
13 D. J. Peterson and H. R. Hays, J. Org. Chem., 1965, 30, 1939.
14 C. Gueguen, P. O’Brien, S. Warren and P. Wyatt, J. Organomet. Chem.,
1997, 529, 279.
15 R. Ditchfie, W. J. Hehre and J. A. Pople, J. Chem. Phys., 1971, 54, 724.
16 W. J. Hehre, R. Ditchfie and J. A. Pople, J. Chem. Phys., 1972, 56, 2257.
17 P. C. Harihara and J. A. Pople, Theor. Chim. Acta, 1973, 28, 213.
18 J. D. Dill and J. A. Pople, J. Chem. Phys., 1975, 62, 2921.
19 M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon,
D. J. Defrees and J. A. Pople, J. Chem. Phys., 1982, 77, 3654.
20 A. D. Becke, J. Chem. Phys., 1993, 98, 1372–1377.
21 A. V. Nemukhin, B. L. Grigorenko and A. A. Granovsky, Moscow
University Chemistry Bulletin, 2004, 45, 75.
22 M. G. Davidson, R. P. Davies, H. J. Mitchell, R. M. Oakley, P. R.
Raithby, R. Snaith, S. Warren and A. Armstrong, Angew. Chem., Int.
Ed. Engl., 1996, 35, 1942.
Fig. 2
23 S. Liao and D. B. Collum, J. Am. Chem. Soc., 2003, 125, 15114.
24 X. Sun and D. B. Collum, J. Am. Chem. Soc., 2000, 122, 2452.
25 S. H. Wiedemann, A. Ramirez and D. B. Collum, J. Am. Chem. Soc.,
2003, 125, 15893.
26 P. Zhao and D. B. Collum, J. Am. Chem. Soc., 2003, 125, 4008.
27 J. E. Davies, R. P. Davies, L. Dunbar, P. R. Raithby, M. G. Russell, R.
Snaith, S. Warren and A. E. H. Wheatley, Angew. Chem., Int. Ed. Engl.,
1997, 36, 2334.
In conclusion, we have demonstrated that phosphine oxides
are lithiated much faster than phosphine sulfides and phosphine
boranes, and that phosphine oxides are significantly more useful
in the synthesis of cyclopropanes. Phosphine sulfides are in turn
lithiated much more readily than phosphine boranes, but we only
achieved the synthesis of one phosphine sulfide derived cyclo-
propane. This result does however show that phosphine sulfides
readily undergo phosphinoyl transfer and that diphenylthiophos-
phinate is an efficient leaving group in a cyclopropane ring closure.
Evidently a reliable synthesis of cyclopropanes, using current
28 F. G. Bordwell, G. E. Drucker and H. E. Fried, J. Org. Chem., 1981,
46, 632.
´
29 S. P. Mesyats, E. N. Tsvetkov, E. S. Petrov, M. I. Terekhova, A. I.
Shatenshtein and M. I. Kabachnik, Russ. Chem. Bull., 1974, 23, 2399.
30 K. B. Wiberg and W. F. Bailey, J. Am. Chem. Soc., 2001, 123, 8231.
This journal is
The Royal Society of Chemistry 2009
Org. Biomol. Chem., 2009, 7, 1329–1336 | 1335
©