A. S. Vincek, R. G. Booth / Tetrahedron Letters 50 (2009) 5107–5109
5109
3. (a) Schreiber, S. L. Nature 2009, 457, 153; (b) Ahn, Y.; Ko, S.-B.; Kim, M.-J.; Park,
J. Coord. Chem. Rev. 2008, 252, 647; (c) Panella, L.; Feringa, B. L.; de Vries, J. G.;
Minnaard, A. J. Org. Lett. 2005, 7, 4177; (d)Palladium in Organic Synthesis; Tsuji,
J., Ed.Topics in Organometallic Chemistry; Springer: Berlin, 2005; Vol. 14, (e)
Nakagawa, H.; Okimoto, Y.; Sakaguchi, S.; Ishii, Y. Tetrahedron Lett. 2003, 44,
103; (f)Cross-Coupling Reactions; Miyaura, N., Ed.Topics in Current Chemistry;
Springer: Berlin, 2002; Vol. 219.
4. (a) Carreño, M. C.; González-López, M.; Latorre, A.; Urbano, A. J. Org. Chem.
2006, 71, 4956; (b) Silveira, C. C.; Machado, A.; Braga, A. L.; Lenardão, E. J.
Tetrahedron Lett. 2004, 45, 4077; (c) Silveira, C. C.; Braga, A. L.; Kaufman, T. S.;
Lenardão, E. J. Tetrahedron 2004, 60, 8295.
with (d) sodium borohydride gave 12d (90%) and (e) hydrodebro-
mination19 provided ( )-12a (99%). Employing brominated 3d in
one additional step gave ( )-12a in 45% yield from reagents, an
improvement over the 11% yield using the non-halogenated 3a. Su-
zuki coupling20 of 3d with (f) phenylboronic acid smoothly pro-
vided 4-(biphenyl-3-yl)tetralen-2-ol phenylacetate 14 (70%).
Thus, simple palladium insertion modifications to bromophenyl
functionality with 3d and 12d were established.
Cascade Friedel–Crafts cycli-acylalkylation, enolization, and O-
acylation with activated phenylacetic acid and moderately reactive
halostyrene or vinylcycloalkanes, provide 4-(3-halophenyl or
cycloalkyl)tetralen-2-ol phenylacetate. An electron-withdrawing
substituted styrene dimerizes less and provides higher yields in
the reaction media than unsubstituted styrene. Base alcoholysis
on 4-phenyltetralen-2-ol phenylacetate reveals 4-phenyltetral-2-
one for use in situ. Simple palladium insertion cross-coupling with
4-(3-bromophenyl)tetralen-2-ol phenylacetate is established and a
short 5-step sequence provides a three times (6–18%) more effi-
cient route to trans-1.
5. (a) Lutz, R. E.; Bailey, P. S.; Shearer, N. H., Jr. J. Am. Chem. Soc. 1946, 68, 2224; (b)
Fine, S. A.; Stern, R. L. J. Org. Chem. 1967, 32, 4132; (c) Fine, S. A.; Stern, R. L. J.
Org. Chem. 1970, 35, 1857; (d) Rhee, S. W.; Tanga, M. J. J. Labelled Compd.
Radiopharm. 2000, 43, 925.
6. (a) Wyrick, S. D.; Booth, R. G.; Myers, A. M.; Owens, C. E.; Kula, N. S.;
Baldessarini, R. J.; McPhail, A. T.; Mailman, R. B. J. Med. Chem. 1993, 36, 2542;
(b) Khalaf, A. A.; El-Khawaga, A. M. A. Rev. Roum. Chim. 1981, 26, 739; (c)
Bertolini, G.; Vecchietti, V.; Mabilia, M.; Norcini, G.; Restelli, A.; Santangelo, F.;
Villa, A. M.; Casagrande, C. Eur. J. Med. Chem. 1992, 27, 663; (d) Gatti, G.;
Piersanti, G.; Spadoni, G. Farmaco 2003, 58, 469.
7. Prakash, S. G. K.; Yan, P.; Török, B.; Olah, G. A. Catal. Lett. 2003, 87, 109.
8. (a) Brook, M. A.; Henry, C.; Jefferson, E.; Jüschke, R.; Sebastian, T.; Tomaszewski,
M.; Wenzel, S. Bull. Soc. Chim. Fr. 1995, 132, 559; (b) Fleming, I.; Pearce, A. J.
Chem. Soc., Perkin Trans. 1 1980, 11, 2485; (c) Lucarini, S.; Bedini, A.; Spadoni,
G.; Piersanti, G. Org. Biomol. Chem. 2008, 6, 147.
9. Galli, C. Synthesis 1979, 4, 303.
10. Gray, A. D.; Smyth, T. P. J. Org. Chem. 2001, 66, 7113.
Acknowledgment
11. Smith, S. M.; Reyes, S. M.; Bravo, O. V.; Herrera, M. A. F.; Pascual, R. M.; Ramírez,
J. S.; Fuente, A.; Reyes, M.; Ruiz, J. A. ARKIVOC 2005, 6, 127.
12. Veeramaneni, V. R.; Pal, M.; Yeleswarapu, K. R. Tetrahedron 2003, 59,
3283.
This work was supported by USPHS (NIH) Grants MH068655,
DA023928, and MH081193.
13. (a) Nevy, J. B.; Hawkinson, D. C.; Blotny, G.; Yao, X.; Pollack, R. M. J. Am. Chem.
Soc. 1997, 119, 12722; (b) Yao, X.; Gold, M. A.; Pollack, R. M. J. Am. Chem. Soc.
1999, 121, 6220.
Supplementary data
14. Matyjaszewski, K.; Sawamoto, M. In Cationic Polymerizations Mechanism,
Synthesis, and Applications; Matyjaszewski, K., Ed.; Marcel Dekker: New York,
1996; p 323.
15. Wang, X.-Z.; Yao, Z.-J.; Liu, H.; Zhang, M.; Yang, D.; George, C.; Burke, T. R., Jr.
Tetrahedron 2003, 59, 6087.
16. (a) Peach, P.; Cross, D. J.; Kenny, J. A.; Mann, I.; Houson, I.; Campbell, L.;
Walsgrove, T.; Wills, M. Tetrahedron 2006, 62, 1864; (b) Mogi, M.; Fuji, K.;
Node, M. Tetrahedron: Asymmetry 2004, 15, 3715; (c) Alcock, N. J.; Mann, I.;
Peach, P.; Wills, M. Tetrahedron: Asymmetry 2002, 13, 2485.
17. Bosse, K.; Marineau, J.; Nason, D. M.; Fliri, A. J.; Segelstein, B. E.; Desai, K.;
Volkmann, R. A. Tetrahedron Lett. 2006, 47, 7285.
18. Lamberts, J. J. M.; Cuppen, T. J. H. M.; Laarhoven, W. H. J. Chem. Soc., Perkin
Trans. 1 1985, 9, 1819.
19. Monguchi, Y.; Kume, A.; Hattori, K.; Maegawa, T.; Sajiki, H. Tetrahedron 2006,
62, 7926.
20. (a) Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc.
1999, 121, 9550; (b) Wolfe, J. P.; Buchwald, S. L. Angew. Chem., Int. Ed. 1999,
38, 2413.
Supplementary data (general experimental methods, proce-
dures, characterization data, copies of 1H and 13C NMR spectra
for synthesized compounds) associated with this article can be
References and notes
1. (a) Rowland, N. E.; Crump, E. M.; Nguyen, N.; Robertson, K.; Sun, Z.; Booth, R. G.
Pharmacol., Biochem. Behav. 2008, 91, 176; (b) Ghoneim, O. M.; Legere, J. A.;
Golbraikh, A.; Tropsha, A.; Booth, R. G. Bioorg. Med. Chem. 2006, 14, 6640; (c)
Bucholtz, E. C.; Brown, R. L.; Tropsha, A.; Booth, R. G.; Wyrick, S. D. J. Med. Chem.
1999, 42, 3041; (d) Youngman, M. A.; Willard, N. M.; Dax, S. L.; McNally, J. J.
Synth. Commun. 2003, 33, 2215.
2. SAR for 4-(3-halophenyl)-b-aminotetralin binding, and function at 5-HT2
GPCRs for will be reported in J. Med. Chem.