the design of effective receptors. For selective binding with
phosphate and pyrophosphate ions, many synthetic receptors
contain polyaza, quanidinium, imidazolium, urea, thiourea, and
amide groups in appropriate dispositions to exert the desired
electrostatic interactions and hydrogen bondings.1,2 Alterna-
tively, the metal-ligand interaction is widely applied to
recognize the phosphate groups.1,3
A Fluorescence Sensor for Detection of Geranyl
Pyrophosphate by the Chemo-Ensemble Method
Kuan-Hung Chen, Jen-Hai Liao, Hsin-Yu Chan, and
Jim-Min Fang*
Department of Chemistry, National Taiwan UniVersity,
Taipei, 106, Taiwan
The methods for effective sensing of biologically important
organic phosphate molecules are in embryonic development,
and most studies focus on the design of optical chemosensors
for detection of nucleotides,5-7 such as adenosine triphosphate
(ATP). A nucleotide chemosensor often incorporates a moiety
to bind with the nitrogenous base in the specific nucleotide, in
addition to the moiety for binding with mono-, di-, or triphos-
phates. Crick-Watson pairs6 and (hetero)aromatic hydrocar-
bons7 are often designed to provide multiple hydrogen bonding,
hydrophobic, and π-π interactions with nitrogenous bases.
Furthermore, dinuclear zinc-dipicolylamine complexes have
been employed as the effective sensors of adenosine mono-
phosphate (AMP) and uridine diphosphate (UDP) in enzyme
activity assays.8 Several research groups have also explored the
optical chemosensors for inositol-1,4,5-trisphosphate,9 lyso-
phosphatidic acid (LPA),10 2,3-bisphosphoglycerate,11 and phos-
phatidylserine on membranes.12 However, the optical method
for sensing isoprenyl pyrophosphates has not yet been reported.
ReceiVed October 09, 2008
Isoprenyl pyrophosphates are known to involve in the
regulation of cell growth and division.13 Consecutive condensa-
Hexaamide receptor 4 and coumarin phosphate 5 form an
ensemble for effective sensing of geranyl pyrophosphate
(GPP). Fluorescence resonance energy transfer in the 4 + 5
ensemble diminishes when 5 is replaced by GPP. Receptor
4 binds selectively with GPP over other anions, including
fatty acids. The 4-GPP complex in 1:1 stoichiometry is
inferred by NMR and fluorescence titrations. Receptor 4
contains a pseudotetrahedral cleft to accommodate GPP via
multiple hydrogen bonds, and the two aliphatic chains exert
additional hydrophobic interactions.
(5) (a) Eliseev, A. V.; Schneider, H.-J. J. Am. Chem. Soc. 1994, 116, 6081–
6088. (b) Shih, H.-C.; Tang, N.; Burrows, C. J.; Rokita, S. E. J. Am. Chem. Soc.
1998, 120, 3284–3288. (c) Ojida, A.; Park, S.-K.; Mito-oka, Y.; Hamachi, I.
Tetrahedron Lett. 2002, 43, 6193–6195. (d) Chen, H.; Parkinson, J. A.; Morris,
R. E.; Sadler, P. J. J. Am. Chem. Soc. 2003, 125, 173–186. (e) McCleskey, S. C.;
Griffin, M. J.; Schneider, S. E.; McDevitt, J. T.; Anslyn, E. V. J. Am. Chem.
Soc. 2003, 125, 1114–1115. (f) Kim, S. K.; Moon, B.-S.; Park, J. H.; Seo, Y. I.;
Koh, H. S.; Yoon, Y. J.; Lee, K. D.; Yoon, J. Tetrahedron Lett. 2005, 46, 6617–
6620. (g) Li, C.; Numata, M.; Takeuchi, M.; Shinkai, S. Angew. Chem., Int. Ed.
2005, 44, 6371–6374. (h) Wang, S.; Chang, Y.-T. J. Am. Chem. Soc. 2006, 128,
10380–10381.
(6) (a) Furuta, H.; Magda, D.; Sessler, J. L. J. Am. Chem. Soc. 1991, 113,
978–985. (b) Kra´l, V.; Sessler, J. L.; Furuta, H. J. Am. Chem. Soc. 1992, 114,
8704–8705. (c) Kato, Y.; Conn, M. M.; Rebek, J., Jr J. Am. Chem. Soc. 1994,
116, 3279–3284. (d) Bell, T. W.; Zheng, H.; Zimmerman, S. C.; Thiessen, P. A.
Angew. Chem., Int. Ed. 1995, 34, 2163–2165. (e) Nakatani, K.; Sando, S.;
Kumasawa, H.; Kikuchi, J.; Saito, I. J. Am. Chem. Soc. 2001, 123, 12650–12657.
(7) (a) Hosseini, M. W.; Blacker, A. J.; Lehn, J.-M. J. Chem. Soc., Chem.
Commun. 1988, 9, 596–598. (b) Abe, H.; Mawatari, Y.; Teraoka, H.; Fujimoto,
K.; Inouye, M. J. Org. Chem. 2004, 69, 495–504. (c) Kej´ık, Z.; Za´ruba, K.;
Michal´ık, D.; Aebek, J.; Dian, J.; Pataridis, S.; Volka, K.; Kra´l, V. Chem.
Commun. 2006, 1533–1535. (d) Neelakandan, P. P.; Hariharan, M.; Ramaiah,
D. J. Am. Chem. Soc. 2006, 128, 11334–11335.
(8) (a) Han, M. S.; Kim, D. H. Bioorg. Med. Chem. Lett. 2003, 13, 1079–
1082. (b) Wongkongkatep, J.; Miyahara, Y.; Ojida, A.; Hamachi, I. Angew.
Chem., Int. Ed. 2006, 45, 665–668.
(9) Niikura, K.; Metzger, A.; Anslyn, E. V. J. Am. Chem. Soc. 1998, 120,
8533–8534.
(10) (a) Alpturk, O.; Rusin, O.; Fakayode, S. O.; Wang, W. H.; Escobedo,
J. O.; Warner, I. M.; Crowe, W. E.; Kral, V.; Pruet, J. M.; Strongin, R. M.
Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 9756–9760. (b) Chen, K.-H.; Yang,
J.-S.; Hwang, C.-Y.; Fang, J.-M. Org. Lett. 2008, 10, 4401–4404.
(11) Zhong, Z.; Anslyn, E. V. Angew. Chem., Int. Ed. 2003, 42, 3005–3008.
(12) (a) Lakshmi, C.; Hanshaw, R. G.; Smith, B. D. Tetrahedron 2004, 60,
11307–11315. (b) Hanshaw, R. G.; O′Neil, E. J.; Foley, M.; Carpenter, R. T.;
Smith, B. D. J. Mater. Chem. 2005, 15, 2707–2713.
(13) (a) Sinensky, M.; Logel, J. Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 3257–
3261. (b) Rilling, H. C.; Breunger, E.; Epstein, W. W.; Crain, P. F. Science
1990, 247, 318–320. (c) Farnsworth, C. C.; Gelb, M. H.; Glomset, J. A. Science
1990, 247, 320–322. (d) Cane, D. E. Chem. ReV. 1990, 90, 1089–1103.
The selective recognition and sensing of phosphate and
pyrophosphate ions has been the main focus of research,1-3
because these ions play essential biological roles in metabolism
of fatty acids, sugars, and isoprenoids.4 The inherent tetrahedral
structure of phosphate ion disposes a challenging problem for
(1) (a) Beer, P. D.; Gale, P. A. Angew. Chem., Int. Ed. 2001, 40, 486–516.
(b) Mart´ınez-Ma´n˜ez, R.; Sancano´n, F. Chem. ReV. 2003, 103, 4419–4476.
(2) (a) Liao, J.-H.; Chen, C.-T.; Fang, J.-M. Org. Lett. 2002, 4, 561–564.
(b) Liao, J.-H.; Chen, C.-T.; Fang, J.-M. J. Chin. Chem. Soc. 2006, 53, 1439–
1446. (c) Yoon, J.; Kim, S. K.; Singh, N. J.; Lee, J. W.; Yang, Y. J.; Chellappan,
K.; Kim, K. S. J. Org. Chem. 2004, 69, 581–583. (d) Singh, N. J.; Jun, E. J.;
Chellappan, K.; Thangadurai, D.; Chandran, R. P.; Hwang, I.-C.; Yoon, J.; Kim,
K. S. Org. Lett. 2007, 9, 485–488.
(3) (a) Lee, D. H.; Kim, S. Y.; Hong, J.-I. Angew. Chem., Int. Ed. 2004, 43,
4777–4780. (b) Cho, H. K.; Lee, D. H.; Hong, J.-I. Chem. Commun. 2005, 1690–
1692. (c) McDonough, M. J.; Reynolds, A. J.; Lee, W. Y. G.; Jolliffe, K. A.
Chem. Commun. 2006, 2971–2973. (d) Lee, H. L.; Park, J.; Lah, M. S.; Chin,
J.; Hong, J.-I. Org. Lett. 2007, 9, 3729–3731. (e) Morgan, B. P.; He, S.; Smith,
R. C. Inorg. Chem. 2007, 46, 9262–9266. (f) Shao, N.; Jin, J. Y.; Wang, G. L.;
Zhang, Y.; Yang, R. H.; Yuan, J. L. Chem. Commun. 2008, 1127–1129.
(4) (a) Schmidtchen, F. P.; Berger, M. Chem. ReV. 1997, 97, 1609–1646.
(b) Beer, P. D. Acc. Chem. Res. 1998, 31, 71–80. (c) Nelson, D. L.; Cox, M. M.
Lehninger Principles of Biochemistry; Worth Publishers: New York, 2000; pp
602,735, and 801.
10.1021/jo802173b CCC: $40.75
Published on Web 12/02/2008
2009 American Chemical Society
J. Org. Chem. 2009, 74, 895–898 895