10.1002/anie.201812369
Angewandte Chemie International Edition
COMMUNICATION
The 7-member-ring benzooxepine 3ap was isolated in 38% yield. and separation of trace transition metal-containing impurities,
Taken together, the results in Scheme 4 indicate that the
tandem cyclization/radical-radical coupling reaction proceeds
with diverse substrates and enables the synthesis of an array of
heterocyclic products.
which is crucial and often very expensive in the pharmaceutical
industry.[17]
For a method to be practical, it must be straightforward and
scalable. The scalability of our method was evaluated through
the telescoped gram-scale synthesis starting with 2-
bromobenzylamine. Thus, treatment of 2-bromobenzylamine
with the benzophenone imine in dichloromethane at rt for 12 h
was followed by solvent removal under reduced pressure
(Scheme 5a). The unpurified imine 1g was combined with the
parent allenyl ether 2a and 3 equiv LiN(SiMe3)2 in DME following
the standard procedure. After 12 h at rt, workup and purification
on silica gel 1.35 g of 3ga was isolated (70% yield, Scheme 5a).
Hydrolysis of benzofurylethylamine 3ga afforded the
corresponding benzofurylethylamine 4ga in 94% yield (Scheme
5b). Compound 4ga was characterized by X-ray crystallography,
confirming its structure. The synthetic value was further
demonstrated by an intramolecular Heck-type cyclization
reaction. Thus, using Pd(OAc)2 (10 mol %), PPh3 (40 mol %) at
150 oC under microwave heating successfully converted
benzofurylethylamine 4ga to tetracyclic product 5ga in 82% yield
(Scheme 5c).[16]
Acknowledgements
Support provided by the NSFC (21662043, 21332007,
21572197 and U1702286), the Program for Changjiang Scholars
and Innovative Research Teams in Universities (IRT17R94), the
Donglu Scholar & excellent young talents of YNU and the
YunLing Scholar of Yunnan Province. P. J. W. thanks the US
NSF (CHE-1464744).
Keywords: radical cyclization • cascade reactions • radical
coupling • benzofurylethylamine • azaallyl anions
[1]
a) R. D. Taylor, M. MacCoss, A. D. G. Lawson, J. Med. Chem.
2014, 57, 5845-5859; b) S. L. Greene, in Novel Psychoactive
Substances (Eds.: P. I. Dargan, D. M. Wood), Academic Press,
Boston, 2013, pp. 383-392.
[2]
[3]
[4]
H. Khanam, Shamsuzzaman, J. Med. Chem. 2015, 97, 483-504.
R. J. Nevagi, S. N. Dighe, J. Med. Chem. 2015, 97, 561-581.
J. R. Huff, P. S. Anderson, J. J. Baldwin, B. V. Clineschmidt, J. P.
Guare, V. J. Lotti, D. J. Pettibone, W. C. Randall, J. P. Vacca, J.
Med. Chem. 1985, 28, 1756-1759.
I
a.
Br
[5]
[6]
Z. Tomaszewski, M. P. Johnson, X. Huang, D. E. Nichols, J. Med.
Chem. 1992, 35, 2061-2064.
Ph2CN
Br
Br
1) DCM, rt
12 h
O
H2N
4 mmol
NH
4 mmol
Ph
N
a) E. Doni, S. Zhou, J. A. Murphy, Molecules 2015, 20, 1755-1774;
b) J. A. Murphy, J. Org. Chem. 2014, 79, 3731-3746; c) J. P.
Barham, G. Coulthard, K. J. Emery, E. Doni, F. Cumine, G.
Nocera, M. P. John, L. E. Berlouis, T. McGuire, T. Tuttle, J. A.
Murphy, J. Am. Chem. Soc. 2016, 138, 7402-7410; d) G. M.
Anderson, I. Cameron, J. A. Murphy, T. Tuttle, RSC Adv. 2016, 6,
11335-11343; e) C. L. Sun, Z. J. Shi, Chem. Rev. 2014, 114,
9219-9280; f) H.-X. Zheng, X.-H. Shan, J.-P. Qu, Y.-B. Kang, Org.
Lett. 2018, 20, 3310-3313.
2) Remove
solvent
LiN(SiMe3)2 (3 equiv)
DME, rt, 0.1 M, 12 h
Ph
O
1g
Ph
Ph
3ga
1.35 g, 70%
4 mmol
c.
b.
NH2
Ph2CN
Ph2CN
Br
Br
10 mol % Pd(OAc)2
40 mol % PPh3
K2CO3 (2 equiv)
1) 1 M HCl
MeOH
THF, 0.1 M
2) NaOH
O
O
O
3ga
MW, 150 oC, 2 h
4ga, 94%
5ga, 82%
[7]
[8]
a) C. P. Jasperse, D. P. Curran, T. L. Fevig, Chem. Rev. 1991, 91,
1237-1286; b) H. Yi, G. T. Zhang, H. M. Wang, Z. Y. Huang, J.
Wang, A. K. Singh, A. W. Lei, Chem. Rev. 2017, 117, 9016-9085;
c) J. Xuan, A. Studer, Chem. Soc. Rev. 2017, 46, 4329-4346.
M. Y. Li, O. Gutierrez, S. Berritt, A. Pascual-Escudero, A.
Yesilcimen, X. D. Yang, J. Adrio, G. Huang, E. Nakamaru-Ogiso,
M. C. Kozlowski, P. J. Walsh, Nat. Chem. 2017, 9, 997-1004.
S. Tang, X. Zhang, J. Sun, D. Niu, J. J. Chruma, Chem. Rev.
2018, 118, 10393-10457.
Scheme 5. a. Gram-scale sequential one-pot synthesis. b. Product hydrolysis.
c. Synthesis of tetracyclic product 5ga via intramolecular Heck-type cyclization.
In summary, we have developed
constructing polycyclic architectures in
a
unique strategy of
single synthetic
a
operation that provides functionalized benzofuran derivatives of
biologically active compounds. In this reaction, simple, readily
synthesized 2-iodo aryl allenyl ethers and ketimines were
coupled to afford a wide variety of benzofurylethylamines. This
transformation was accomplished via a tandem SET/radical
cyclization/intermolecular radical–radical coupling process in
which the 2-azaallyl anion plays the roles of “super-electron-
donor” (SEDs) and the precursor to the 2-azaallyl radical
coupling partner. In particular, the 2-iodo aryl allenyl ethers can
[9]
[10]
a) M. Y. Li, S. Berritt, L. Matuszewski, G. G. Deng, A. Pascual-
Escudero, G. B. Panetti, M. Poznik, X. D. Yang, J. J. Chruma, P. J.
Walsh, J. Am. Chem. Soc. 2017, 139, 16327-16333; b) Q. Wang,
M. Poznik, M. Li, P. J. Walsh, J. J. Chruma, Adv. Synth. Catal.
2018, 360, 2854-2868; c) R. A. Shelp, P. J. Walsh, Angew. Chem.
Int. Ed. 2018, 57, 15857-15861.
[11]
[12]
a) A. Studer, Chem. Eur. J. 2001, 7, 1159-1164; b) H. Fischer,
Chem. Rev. 2001, 101, 3581-3610.
be diversified with
4 classes of modifications, including
R. Grigg, J. M. Sansano, V. Santhakumar, V. Sridharan, R.
Thangavelanthum, M. ThorntonPett, D. Wilson, Tetrahedron 1997,
53, 11803-11826.
functionalization of the aryl group, expansion of the aryl-system,
substitution of the C1 position of the allenyl group, and extension
of the oxygen linker. Furthermore, the N-benzyl group of the
ketimine can be easily decorated with substituents or with
heterocycles. Thus, this method enables the synthesis of a
diverse array of benzofurylethylamine derivatives. It is
noteworthy that this method does not require addition of
transition metals, avoiding challenges of sustainability, expense,
[13]
[14]
[15]
[16]
L. Zhang, L. Jiao, Chem. Sci. 2018, 9, 2711-2722.
R. Grigg, J. M. Sansano, Tetrahedron 1996, 52, 13441-13454.
H. Tsuji, E. Nakamura, Accounts Chem. Res. 2017, 50, 396-406.
L. J. Yang, X. Q. Wang, Z. Q. Pan, M. Zhou, W. Chen, X. D. Yang,
Synlett 2011, 207-210.
[17]
C. E. Garrett, K. Prasad, Adv. Synth. Catal. 2004, 346, 889-900.
This article is protected by copyright. All rights reserved.