3084
N.A. Vermeulen et al. / Tetrahedron 65 (2009) 3078–3084
20 mol % catalyst loading: run 1 (104.0 mg, 0.240 mmol, 48%).
Recovered starting material (rSM): run 1 (54.2 mg, 0.125 mmol,
25%).
25 mol % catalyst loading: run 1 (110.3 mg, 0.255 mmol, 51%), run
2 (109.0 mg, 0.250 mmol, 50%). Average: 51%. Recovered starting
material (rSM): run 1 (41.0 mg, 0.095 mmol, 19%), run 2 (39.0 mg,
0.090 mmol, 18%). Average recovered starting material: 19%.
fellowship. M.S.C. is a Harvard University graduate student com-
pleting doctoral work with M.C.W. at the University of Illinois at
Urbana-Champaign. M.S.C. gratefully acknowledges Bristol-Myers
Squibb for a graduate fellowship. We thank M.A. Bigi for performing
the oxidative lactonization of 4-methylvaleric acid, and E.M. Stang
for verifying the hydroxylation results of artemisinin. Both M.A.B.
and E.M.S. are thanked for helpful discussions in the writing of this
manuscript.
4.6. Lactonization of 4-methylvaleric acid and recovery of
free (S,S)-PDP ligand after oxidation
References and notes
Iterative addition protocol for the oxidation of 4-methylvaleric
acid (58.1 mg, 0.5 mmol, 1.0 equiv) was performed similarly to the
general procedure with the exception that no AcOH was added to
1. For some recent reviews on C–H bond functionalizations: (a) Muller, P.; Fruit, C.
Chem. Rev. 2003, 103, 2905; (b) Dick, A. R.; Sanford, M. S. Tetrahedron 2006, 62,
2439; (c) Davies, H. M. L.; Manning, J. R. Nature 2008, 451, 417; (d) Lewis, J. C.;
Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2008, 41, 1013; (e) Alberico, D.; Scott,
M. E.; Lautens, M. Chem. Rev. 2007, 107, 174.
2. Allylic C–H to C–O: (a) Chen, M. S.; White, M. C. J. Am. Chem. Soc. 2004, 126,
1346; (b) Chen, M. S.; Prabagaran, N.; Labenz, N. A.; White, M. C. J. Am. Chem.
Soc. 2005, 127, 6970; (c) Fraunhoffer, K. J.; Prabagaran, N.; Sirois, L. E.; White,
M. C. J. Am. Chem. Soc. 2006, 128, 9032; (d) Delcamp, J. D.; White, M. C. J. Am.
Chem. Soc. 2006, 128, 15076; Allylic C–H to C–N: (e) Fraunhoffer, K. J.; White,
M. C. J. Am. Chem. Soc. 2007, 129, 7274; (f) Reed, S. A.; White, M. C. J. Am. Chem.
Soc. 2008, 130, 3316; Allylic C–H to C–C: (g) Young, A. J.; White, M. C. J. Am.
Chem. Soc. 2008, 130, 14090.
the reaction. The subsequent two additions of
0.025 mmol, 5 mol %) in 0.50 mL CH3CN (0.05 M) and H2O2
(50 wt %, 36.8 L, 0.6 mmol, 1.2 equiv) in 4.5 mL CH3CN (0.13 M)
1 (23.3 mg,
m
were added without modification from the previously described
procedure. The reaction was run with two different workups; one
workup was designed to isolate lactone product and a second
workup was designed to isolate (S,S)-PDP ligand.13
3. (a) Fraunhoffer, K. J.; Bachovchin, D. A.; White, M. C. Org. Lett. 2005, 7, 223; (b)
Covell, D. J.; Vermeulen, N. A.; Labenz, N. A.; White, M. C. Angew. Chem., Int. Ed.
2006, 45, 8217; For an excellent review see: (c) Hoffman, R. W. Synthesis 2006,
21, 3531.
4.6.1. Isolation of the lactone product
The reaction was quenched with a solution of saturated NaHCO3.
The aqueous layer was extracted with Et2O (3ꢂ30 mL) and the
organic layers were combined, dried over MgSO4, filtered, and
concentrated carefully by rotary evaporation at 0 ꢀC to prevent loss
of volatile product. The crude product was purified by flash silica
gel column chromatography (30% EtOAc/hexanes). The product 5,5-
dimethyldihydrofuran-2(3H)-one14 was obtained in 27.5 mg (run 1,
0.241 mmol, 48%) and 26.9 mg (run 2, 0.236 mmol, 47%). Average:
48%.
4. For some elegant examples of SeO2 allylic oxidations in natural products syn-
thesis, see: (a) Nicolaou, K. C.; Yang, Z.; Liu, J. J.; Ueno, H.; Nantermet, P. G.; Guy,
R. K.; Claiborne, C. F.; Renaud, J.; Couladouros, E. A.; Paulvannan, K.; Sorenson,
E. J. Nature 1994, 367, 630; (b) Wender, P. A.; Jesudason, C. D.; Nakahira, H.;
Tamura, N.; Tebbe, A. L.; Ueno, Y. J. Am. Chem. Soc. 1997, 119, 12976.
5. For some recent examples, see: (a) Lee, S.; Fuchs, P. L. J. Am. Chem. Soc. 2002,
124, 13978; (b) Wender, P. A.; Hilinski, M. K.; Mayweg, A. V. W. Org. Lett. 2005, 7,
79; (c) Davies, H. M. L.; Dai, X.; Long, M. S. J. Am. Chem. Soc. 2006, 128, 2485.
6. For some selected examples, see: (a) Wang, D.-H.; Wasa, M.; Giri, R.; Yu, J.-Q.
J. Am. Chem. Soc. 2008, 130, 7190; (b) Lafrance, M.; Blaquiere, N.; Fagnou, K. Eur.
J. Org. Chem. 2007, 811; (c) Das, S.; Incarvito, C. D.; Crabtree, R. H.; Brudvig, G. W.
Science 2006, 312, 1941; (d) O’Malley, S. J.; Tan, K. L.; Watzke, A.; Bergman, R. G.;
Ellman, J. A. J. Am. Chem. Soc. 2005, 127, 13496; (e) Hinman, A.; Du Bois, J. J. Am.
Chem. Soc. 2003, 125, 11510; (f) Breslow, R.; Baldwin, S.; Flechtner, T.; Kalicky, P.;
Liu, S.; Washburn, W. J. Am. Chem. Soc. 1973, 95, 3251; (g) Shevi, R. A.; Guerrero,
C. A.; Shi, J.; Li, C.-C.; Baran, P. S. J. Am. Chem. Soc. 2008, 130, 7241.
7. PDP indicates 2-({(S)-2-[(S)-1-(pyridin-2-ylmethyl)pyrrolidin-2-yl]pyrrolidin-
1-yl}methyl)pyridine].
4.6.2. Isolation of (S,S-PDP) ligand
The crude reaction was quenched with concentrated NH4OH
and concentrated via rotary evaporation at 35 ꢀC to dryness in order
to remove volatile lactone product. The brown residue was filtered
through a SiO2 plug with EtOAc as eluent to obtain free (S,S)-PDP
ligand: run 1, 23.1 mg, 0.072 mmol, 95%; run 2, 22.8 mg,
0.071 mmol, 94%; based on 15 mol % (0.075 mmol) 1.
8. Chen, M. S.; White, M. C. Science 2007, 318, 783.
9. For the first report of a related non-heme iron(mep) complex [mep¼N,N0-
dimethyl-N,N0-bis(2-pyridylmethyl)-ethane, 1,2-diamine] and its oxidation
reactivity see: (a) Okuno, T.; Ito, S.; Ohba, S.; Nishida, Y. J. Chem. Soc., Dalton
Trans. 1997, 3547; For mechanistic studies on Fe(mep) oxidations see: (b) Chen,
K.; Que, L., Jr. Chem. Commun. 1999, 1375; For the first demonstration of
1H NMR (400 MHz, CDCl3)
d
8.49 (dd, J¼0.8, 4.8 Hz, 2H), 7.60 (dt,
J¼2.0, 7.8 Hz, 2H), 7.39 (d, J¼7.6 Hz, 2H), 7.11 (dd, J¼5.2, 6.0 Hz, 2H),
4.19 (d, J¼14.0 Hz, 2H), 3.49 (d, J¼14.4 Hz, 2H), 2.99 (p, J¼4.4 Hz,
2H), 2.79 (m, 2H), 2.22 (appq, J¼8.4 Hz, 2H), 1.77–1.64 (m, 8H). 13C
a
preparatively useful non-heme iron system see the Fe(mep) catalyzed
epoxidation: (c) White, M. C.; Doyle, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2001,
123, 7194.
NMR (100 MHz, CDCl3)
d 160.4, 148.8, 136.3, 122.7, 121.6, 65.3, 61.1,
55.3, 25.9, 23.5. IR (film, cmꢃ1): 2960, 2920, 2872, 2806, 1588, 1570,
1474, 1431, 1366, 1212, 1150, 1120, 1046, 993, 931, 897, 759. HRMS
(ESI) m/z calcd C20H27N4 [MþH]þ: 323.2236, found: 323.2239.
10. For some examples of non-directed aliphatic C–H oxidation reactions with
simple hydrocarbon substrates see: (a) Murray, R. W.; Jeyaraman, R.; Mohan, L.
J. Am. Chem. Soc. 1986, 108, 2470; (b) Mello, R.; Fiorentino, M.; Fusco, C.; Curci, R.
J. Am. Chem. Soc. 1989, 111, 6749; (c) DesMarteau, D. D.; Donadelli, A.; Montanari,
V.; Petrov, V. A.; Resnati, G. J. Am. Chem. Soc. 1993, 115, 4897; (d) Labinger, J. A.;
Bercaw, J. E. Nature 2002, 417, 507 and references therein; (e) Brodsky, B. H.; Du
Bois, J. J. Am. Chem. Soc. 2005, 127, 15391; (f) Ref. 5a.; (g) Ref. 9a.
11. For the first demonstration of the importance of carboxylic acid additives in
non-heme iron catalyzed oxidations, see Ref. 9c.
Acknowledgements
We are grateful to the A.P Sloan Foundation, the Camille and
Henry Dreyfus Foundation, Bristol-Myers Squibb, Pfizer, Amgen, Eli
Lilly, Merck Research Laboratories, Abbott Laboratories, AstraZe-
neca, and the University of Illinois for financial support and gen-
erous gifts. N.A.V. gratefully acknowledges Pfizer for a graduate
12. We have not observed decreases in catalyst 1 hydroxylation activity after ca. 1
year storage at 0 ꢀC.
13. Jensen, M. P.; Mehn, M. P.; Que, L., Jr. Angew. Chem., Int. Ed. 2003, 42, 4357.
14. For full characterization see: Martin, D. D.; Marcos, I. S.; Basabe, P.; Romero,
R. E.; Moro, R. F.; Lumeras, W.; Rodriguez, L.; Urones, J. G. Synthesis 2001, 7, 1013.