Full Paper
2
20 H), 1.83 (m, 8 H), 1.95 (s, 6 H), 3.36 [d, JH,H = 14 Hz, 6 H], 3.7– 2 H), 7.03 (br. d, 4 H), 7.05 (br. d, 4 H), 7.10 (br. s, 4 H), 7.12 (br. s, 4
3
2
3.8 (m, 10 H), 3.86 (s, 9 H), 4.03 [t, JH,H = 6 Hz, 4 H], 4.47 [d, JH,H
=
H), 7.39 [d, 3JH,H = 9 Hz, 4 H], 7.58 (br. s, 6 H), 7.83 (m, 6 H), 7.95 (m,
3
14 Hz, 6 H], 5.07 (s, 1 H), 5.13 (s, 1 H), 6.65 (m, 2 H), 6.74 (m, 2 H),
6.91 [d, JH,H = 8 Hz, 4 H], 6.95–7.10 (m, 10 H), 7.1–7.2 (m, 16 H),
2 H), 8.20 [d, JH,H = 9 Hz, 4 H], 9.42 (br. s, 6 H) ppm. 13C NMR
3
(100 MHz, C6D6): δ = 14.0, 20.8, 22.8, 25.8, 26.6, 28.6, 28.9, 29.2, 29.6
(3 res.), 29.7 (2 res.), 29.8, 29.9 (4 res.), 30.1, 30.2, 30.8, 31.6, 32.0,
34.6, 57.3, 60.8, 64.8, 64.9, 73.0, 116.6, 117.9, 121.0 (2 res.), 124.8 (2
7.35–7.45 (m, 12 H), 7.58 (br. s, 6 H), 7.75–7.90 (m, 4 H), 7.12 (m, 2
H), 8.18 [d, 3JH,H = 8 Hz, 4 H], 9.39 (br. s, 6 H) ppm. 13C NMR (75 MHz,
C6D6): δ = 14.0, 20.8, 22.8, 25.8, 26.1, 26.5, 28.6, 28.9, 29.2, 29.5, 29.6, res.), 126.6, 127.0, 127.1, 127.6, 127.8, 128.5 (2 res.), 128.7 (2 res.),
29.7 (3 res.), 29.9 (3 res.), 30.7, 31.5, 31.9, 34.6, 57.3, 60.8, 64.9, 73.1, 129.4, 139.3, 141.1, 142.9, 144.3, 148.3, 152.9, 153.3, 171.9 ppm. ESI-
116.6, 118.0, 121.0, 124.9, 125.5, 126.5, 127.0, 128.5 (2 res.), 128.6, MS(+): m/z (%) = 1307 (100) [M2+].
128.7, 132.0, 133.6, 137.3, 139.0, 139.3, 139.4, 141.2, 143.3, 148.3,
152.9, 153.4, 171.9 ppm. ESI-MS(+): m/z (%) = 1237 (100) [M2+].
Acknowledgments
Rotaxane R(C16C6): Rotaxane was obtained as a red solid (43 %).
This work was supported by the Italian Ministero dell'Università
e della Ricerca (MIUR) (PRIN 2010CX2TLM “InfoChem” and
“MULTINANOITA”), the University of Bologna (Finanziamenti di
Ateneo alla Ricerca di Base, SLaMM Project), University of Parma
and Centro Interdipartimentale di Misure “G. Casnati” for NMR
and Mass measurements.
1H NMR (300 MHz, C6D6): δ = 0.85–1.00 (br. s, 14 H), 1.10 (br. s, 6
H), 1.2–1.4 (m, 48 H), 1.51 (br. s, 4 H), 1.58 (m, 8 H), 1.70 (br. s, 22
H), 1.82 (m, 8 H), 1.95 (s, 6 H), 3.37 [d, 2JH,H = 14 Hz, 6 H], 3.45–3.65
3
(br. s, 6 H), 3.70 (m, 4 H), 3.80 (s, 9 H), 4.02 [t, JH,H = 6 Hz, 2 H],
3
2
4.33 [t, JH,H = 6 Hz, 2 H], 4.48 [d, JH,H = 14 Hz, 6 H], 5.06 (s, 1 H),
3
5.10 (s, 1 H), 6.61 (m, 2 H), 6.73 (br. t, 2 H), 6.89 [d, JH,H = 8 Hz, 4
H], 6.93 (br. s, 2 H), 7.00–7.10 (m, 10 H), 7.10–7.20 (m, 12 H), 7.35–
3
7.50 (m, 12 H), 7.59 (br. s, 6 H), 7.80–7.90 (m, 10 H), 8.15 [d, JH,H
=
Keywords: Supramolecular chemistry · Molecular devices ·
Rotaxanes · EPR spectroscopy · Electrochemistry
8 Hz, 4 H], 9.39 (br. s, 6 H) ppm. 13C NMR (100 MHz, C6D6): δ = 14.1,
20.8, 22.8, 25.0, 25.5, 25.8, 26.6, 28.3, 28.6, 29.2, 29.6, 29.7, 29.8 (2
res.), 30.0, 30.1, 30.2, 30.4 (2 res.), 30.8, 31.1, 31.5, 32.0, 34.6, 57.3,
57.4, 60.4, 60.7, 64.6, 64.8, 73.0, 116.6, 118.0, 121.1, 124.8, 125.5,
126.6, 127.1, 127.2, 127.6, 127.8, 128.5, 128.6, 128.7 (2 res.), 128.8,
129.3, 132.1, 133.6, 139.2 (2 res.), 141.1, 142.9, 144.3, 148.3, 152.8,
153.3, 171.9, 172.0 ppm. ESI-MS(+): m/z (%) = 1237 (100) [M2+].
[1] V. Balzani, A. Credi, M. Venturi, Molecular Devices and Machines - Concepts
and Perspectives for the Nano World, Wiley-VCH, Weinheim, Germany,
2008.
[2] a) D. A. Leigh, J. K. Y. Wong, F. Dehez, F. Zerbetto, Nature 2003, 424,
174–179; b) G. Ragazzon, M. Baroncini, S. Silvi, M. Venturi, A. Credi, Nat.
Nanotechnol. 2015, 10, 70–75.
[3] a) P. Franchi, M. Lucarini, G. F. Pedulli, Curr. Org. Chem. 2004, 8, 1831–
1849; b) C. Casati, P. Franchi, R. Pievo, E. Mezzina, M. Lucarini, J. Am.
Chem. Soc. 2012, 134, 19108–19117; c) V. Bleve, C. Schäfer, P. Franchi, S.
Silvi, E. Mezzina, A. Credi, M. Lucarini, ChemistryOpen 2015, 4, 18–21; d)
F. Romano, R. Manoni, P. Franchi, E. Mezzina, M. Lucarini, Chem. Eur. J.
2015, 21, 2775–2779; e) E. Mezzina, R. Manoni, F. Romano, M. Lucarini,
Asian J. Org. Chem. 2015, 4, 296–310; f) G. Casano, F. Poulhès, T. K. Tran,
M. M. Ayhan, H. Karoui, D. Siri, A. Gaudel-Siri, A. Rockenbauer, G. Jeschke,
D. Bardelang, P. Tordo, O. Ouari, Nanoscale 2015, 7, 12143–12150.
[4] A. Credi, S. Dumas, S. Silvi, M. Venturi, A. Arduini, A. Pochini, A. Secchi, J.
Org. Chem. 2004, 69, 5881–5887.
[5] A. Arduini, R. Bussolati, A. Credi, A. Secchi, S. Silvi, M. Semeraro, M. Ven-
turi, J. Am. Chem. Soc. 2013, 135, 9924–9930.
[6] F. Ugozzoli, C. Massera, A. Arduini, A. Pochini, A. Secchi, CrystEngComm
2004, 6, 227–232.
[7] A. Arduini, F. Ciesa, M. Fragassi, A. Pochini, A. Secchi, Angew. Chem. Int.
Ed. 2005, 44, 278–281; Angew. Chem. 2005, 117, 282–285.
[8] A. Arduini, R. Bussolati, A. Credi, G. Faimani, S. Garaudée, A. Pochini, A.
Secchi, M. Semeraro, S. Silvi, M. Venturi, Chem. Eur. J. 2009, 15, 3230–
3242.
[9] A. Arduini, F. Calzavacca, A. Pochini, A. Secchi, Chem. Eur. J. 2003, 9, 793–
799.
[10] A. Arduini, R. Bussolati, A. Credi, A. Pochini, A. Secchi, S. Silvi, M. Venturi,
Tetrahedron 2008, 64, 8279–8286.
[11] A. Arduini, R. Ferdani, A. Pochini, A. Secchi, F. Ugozzoli, Angew. Chem. Int.
Ed. 2000, 39, 3453–3456; Angew. Chem. 2000, 112, 3595.
[12] A. Casnati, P. Minari, A. Pochini, R. Ungaro, J. Chem. Soc., Chem. Commun.
1991, 1413–1414.
[13] Unpublished results.
[14] M. Semeraro, A. Secchi, S. Silvi, M. Venturi, A. Arduini, A. Credi, Inorg.
Chim. Acta 2014, 417, 258–262.
[15] P. M. S. Monk, The Viologens – Physicochemical Properties, Synthesis and
Applications of the Salt of 4,4′-Bipyridine, John Wiley & Sons, Chichester,
UK, 1998.
[16] a) E. M. Kosower, J. L. Cotter, J. Am. Chem. Soc. 1964, 86, 5524–5530; b)
C. S. Johnson, H. S. Gutowsky, J. Chem. Phys. 1963, 39, 58–62; c) D.
Guerin-Ouler, C. Nicollin, C. Sierro, C. Lamy, Mol. Phys. 1977, 34, 161–170;
d) D. W. Clack, J. C. Evans, A. Y. Obad, C. C. Rowlands, Tetrahedron 1983,
1,1′-Bis(16-hydroxyhexadecyl)-[4,4′-bipyridine]-1,1′-diium Di-
tosylate (7c×2TsO): In a sealed glass reactor, 4c (0.22 g, 0.54 mmol)
and 4,4′-bipyridine (0.02 g, 0.13 mmol) were dissolved in anhydrous
acetonitrile (5 mL) and heated at 110 °C for 7 d. After cooling at
room temperature, precipitation of the product was observed. The
solid was collected by Buchner filtration and washed with cold
acetonitrile. Axle 7c×2TsO (60 mg, 48 %) was obtained as a white
1
solid, m.p. 165–170 °C. H NMR (300 MHz, MeOD): δ = 1.2–1.6 (m,
3
56 H, aliphatic CH2), 2.39 (s, 3 H, Ar-CH3), 3.55 [t, JH,H = 6.6 Hz, 4
H, HO-CH2], 4.74 [t, 3JH,H = 7.5 Hz, 4 H, N+-CH2], 7.24 [d, 3JH,H = 8 Hz,
3
3
4 H, ArH], 7.69 [d, JH,H = 8 Hz, 4 H, ArH], 8.67 [d, JH,H = 6.9 Hz, 4
H, ArH], 9.27 [d, JH,H = 6.9 Hz, 2 H, ArH] ppm. 13C NMR (100 MHz,
3
MeOD): δ = 20.0, 25.5, 25.8, 28.8, 29.1, 29.2 (2 res.), 29.3 (2 res.),
31.2, 32.2, 61.6, 62.0, 125.5, 126.9, 128.5, 140.3, 142.1, 145.6,
149.9 ppm. ESI-MS(+): m/z (%) = 678 (100), 639 (40) [M2+ – H].
Rotaxane R(C16C16): Axle 7c×2TsO (0.05 g, 0.05 mmol) was sus-
pended in a solution of 1 (0.08 g, 0.05 mmol) in anhydrous toluene
(20 mL). The suspension was stirred at 50 °C for 3 h until the solu-
tion turned dark-red and the axle was completely dissolved. Trieth-
ylamine (15 μL, 0.1 mmol) and diphenylacetyl chloride (25 mg,
0.1 mmol) were then added and the solution was stirred at room
temperature for one day. After removing the solvent, the residue
was partioned between dichloromethane and water. The organic
phase was separated and evaporated under reduced pressure, and
crude product was purified by column chromatography (dichloro-
methane/methanol, 50:1). The isolated rotaxane was redissolved in
dichloromethane (20 mL) and washed with 0.1
M silver p-toluenes-
ulfonate solution in water (50 mL). The organic phase was separated
and the solvent was removed under reduced pressure, to afford
rotaxane (70 mg, 46 %) as a red solid. 1H NMR (300 MHz, C6D6): δ =
0.90 (br. s, 4 H), 0.96 (br. t, 9 H + 4 H), 1.12 (m, 14 H), 1.2–1.4 (m,
64 H), 1.5–1.6 (m, 16 H), 1.73 (br. s, 24 H), 1.84 (m, 8 H), 1.96 (s, 6
2
H), 3.36 [d, JH,H = 12 Hz, 6 H], 3.61 (m, 6 H), 3.72 (m, 4 H), 3.86 (s,
3
2
9 H), 4.03 [t, JH,H = 6 Hz, 4 H], 4.48 [d, JH,H = 12 Hz, 6 H], 5.07 (s,
2 H), 6.69 (m, 6 H), 6.83 (m, 2 H), 6.91 [d, 3JH,H = 9 Hz, 4 H], 7.01 (m,
Eur. J. Org. Chem. 2016, 1033–1042
1041
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim