4
Tetrahedron Letters
The compound 5 was tested at 3, 10 and 30 µM against the
Supplementary data
breast adenocarcinoma cells MCF-7 using the sulphorhodamine
B (SRB) assay20a,b with gemcitabine20c (10 µM) as a reference
compound. The compound 5 showed dose dependent inhibition
(i.e. ~ 40, 60 and 90% at 3, 10 and 30 µM) of MCF-7 cells when
gemcitabine showed ~ 50% inhibition at 10 µM (Fig. 1). Thus
compound 5 deserves further attention as a potential anticancer
agent. Nevertheless, synthesis of other analogues of compound 5
is currently underway upon completion of which all these
compounds will be evaluated for their potential pharmacological
activities.
Supplementary data associated with this article can be found,
in the on line version, at xxxxxxxxx
References and notes
1.
2.
3.
Cao, S.; Guza, R. C.; Wisse, J. H.; Miller, J. S.; Evans, R.;
Kingston, D. G. I. J. Nat. Prod. 2005, 68, 487.
Cao, S.; Norris, A.; Wisse, J. H.; Miller, J. S.; Evans, R.;
Kingston, D. G. I. Nat. Prod. Res. 2007, 21, 872.
Nagano, T.; Pospíšil, J.; Chollet, G.; Schulthoff, S.; Hickmann, V.;
Moulin, E.; Herrmann, J.; Müller, R.; Fürstner, A. Chem. Eur. J.
2009, 15, 9697.
4.
5.
Fürstner, A.; Nagano, T. J. Am. Chem. Soc. 2007, 129, 1906.
Jackson, K. L.; Henderson, J. A.; Morris, J. C.; Motoyoshi, H.;
Phillips, A. J. Tetrahedron Lett. 2008, 49, 2939.
6.
7.
Prasad, K. R.; Pawar, A. B. Organic Lett. 2011, 13, 4252.
(a) Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815;
(b) Sivaraman, B.; Aidhen, I. S. Synthesis 2008, 3707; (c)
Banwell, M.; Smith, J. Synth. Commun. 2001, 31, 2011; (d)
Khlestkin, V. K.; Mazhukin, D. G. Curr. Org. Chem. 2003, 7, 967.
(a) Maugras, I.; Poncet, J.; Jouin, P. Tetrahedron 1990, 46, 2807;
(b) Shreder, K.; Zhang, L.; Goodman, M. Tetrahedron Lett. 1998,
39, 221.
8.
9.
Braun, M.; Waldmuller, D. Synthesis 1989, 856.
10. Dinh, T. Q., Armstrong, R. W. Tetrahedron Lett. 1996, 37, 1161.
11. Einhorn, J.; Einhorn, C.; Luche, J. L. Synth. Commun. 1990, 20,
1105.
12. (a) Spaltenstein, A.; Leban, J. J.; Huang, J. J.; Reinhardt, K. R.;
Viveros, O. H.; Sigafoos, J.; Crouch, R. Tetrahedron Lett. 1996,
37, 1343; (b) Pearson, C.; Rinehart, K. L.; Sugano, M.
Tetrahedron Lett. 1999, 40, 411.
Fig. 1. % inhibition of breast adenocarcinoma cells (MCF-7) after 72 h of
13. DeLuca, L.; Giacomelli, G.; Taddei, M. J. Org. Chem. 2001, 66,
2534.
compound treatment.
14. Sharnabai, K. M.; Nagendra, G.; Vishwanatha, T. M.; Sureshbabu,
V. V. Tetrahedron Lett. 2013, 54, 478.
In conclusion, a practical and efficient synthesis of (S)-1-
(furan-2-yl)pent-4-en-1-ol has been achieved in 75% overall
yield (better than ~ 42% overall yield of the previously reported
method). The synthesis involved the use of Weinreb amide
formation followed by Weinreb ketone synthesis and finally CBS
(Corey-Bakshi-Shibata) reduction of the resulting ketone. The
methodology does not require resolution of enantiomers. To
expand the generality and scope of each steps involved a variety
of Weinreb amides were prepared mostly from non-
amino/peptide acids using the cheaper and improved optimized
conditions. Some of these amides were converted to the
corresponding ketones two of which were taken forward for CBS
reduction. The furan precursor synthesized was converted to the
next intermediate i.e. (S)-2-(but-3-enyl)-6-hydroxy-2H-pyran-
15. For applications of Weinreb ketone synthesis, see: (a) Paek, S.-M.;
Seo, S.-Y.; Kim, S.-H.; Jung, J.-W.; Lee, Y.-S.; Jung, J.-K.; Suh,
Y.-G. Organic Lett. 2005, 7, 3159; (b) Barbazanges, M.; Meyer,
C.; Cossy, J. Organic Lett. 2008, 10, 4489; (c) Shimizu, T.; Satoh,
T.; Murakoshi, K.; Sodeoka, M. Organic Lett. 2005, 7, 5573.
16. It is necessary to add the amide 2 into the the Grignard reagent
(instead of vice versa) to obtain the best yield of ketone 3.
17. (a) Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am. Chem. Soc.
1987, 109, 5551; (b) Corey, E. J.; Bakshi, R. K.; Shibata, S.;
Chen, C.; Singh, V. K. J. Am. Chem. Soc. 1987, 109, 7925; (c)
Mathre, D. J.; Thompson, A. S.; Douglas, A. W.; Hoogsteen, K.;
Carroll, J. D.; Corley, E. G.; Grabowski, E. J. J. J. Org. Chem.
1993, 58, 2880.
18. Guerra, F. M.; Zubıa, E.; Ortega, M. J.; Moreno-Dorado, F. J.;
Massanet, G. M. Tetrahedron 2010, 66, 157.
19. (a) Grubbs, R. H.; Trnka, T. M. Ruthenium-Catalyzed Olefin
Metathesis, in Ruthenium in Organic Synthesis (ed S.-I.
Murahashi), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim,
FRG. 2004; doi: 10.1002/3527603832.ch6; (b) Nguyen, S. T.;
Johnson, L. K.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc.
1992, 114, 3974.
20. (a) Rubinstein, L.V.; Shoemaker, R. H.; Paull, K. D.; Simon, R.
M.; Tosini, S.; Skehan, P.; Scudiero, D. A.; Monks, A.; Boyd, M.
R. J. Natl. Cancer Inst. 1990, 82, 1113; (b) Skehan, P.; Storeng,
R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.
T.; Bokesch, H.; Kenney, S.; Boyd, M. R. J. Natl. Cancer Inst.
1990, 82, 1107; c) Chu, E.; DeVita, V.T. Physicians' Cancer
Chemotherapy Drug Manual, Jones & Bartlett, 2007.
3(6H)-one and
a 6-(furan-2-yl)-6-hydroxyhex-2-enoic acid
derivative of potential pharmacological interest. Overall, the
current methodology not only presents a better alternative
towards the synthesis of Ipomoeassin family of compounds or
construction of C1-C15 domain of halichondrins but also may
find applications in synthesizing small molecules for Chemical
Biology / Med Chem purpose.
Acknowledgements
The authors thank Dr. Vilas Dahanukar, Dr. H. Rammohan
and Shiva Kumar K. B. of Dr. Reddy’s Laboratories Limited for
useful discussions and the Analytical Department of Dr. Reddy’s
Laboratories Limited for spectra. The authors thank Dr. Mohd
Ashraf Ashfaq for SRB assay.
.