complete DNA/RNA assembly. Ideally, this reaction should
be orthogonal to the azide/alkyne click reaction so that
multiple labeling of DNA can be achieved by combining
both methods.18 If the new reaction proceeds without a
catalyst, the reaction may even complement the fast growing
repertoire of copper-free click reactions which so far involve:
(1) The reaction of azides with strained cycloalkynes
pioneered by the Bertozzi group19-24 and used for glyco-
conjugate labeling by Boons;25 (2) the reaction of strained
alkenes with tetrazines developed by Fox26 and Hilder-
brand;27 (3) the reaction of oxanorbornadienes with alkynes
used, for example, for the synthesis of RGD peptide
conjugates;28,29 and (4) a photoclick reaction discovered by
Lin.30
nucleoside 1 and incorporated the phosphoramidite into a
series of 9-mer ODNs depicted in Scheme 2.38 The synthesis
Scheme 2
.
(a) Synthesis of Norbornene Bearing Phosphoramidite 1
and (b) a List of the ODN Series Containing 7
With the aim of developing a high-yielding reaction that
meets the above-described criteria, we investigated the
Huisgen 1,3-dipolar cycloaddition reaction of norbornenes
(as strained alkenes) with nitrile oxides,31-36 bearing in mind
that nitrile oxides are strong electrophiles, which may cross
react with DNA bases. The reaction provides typically
exoselective substituted 2-isoxazolines as depicted in Scheme
1.37 Here we report that this reaction enables labeling of
Scheme 1. Depiction of the Nitrile Oxide-Norbornene Click
Reaction Giving 1,4- and 1,5-exo-Products
of 1 was achieved in six steps as described in Scheme 2. A
mixture of exo/endo-norbornenylcarboxylic acid 2 was
converted into the known alcohol 3 in two steps involving
exo/endo separation via iodolactonization followed by reduc-
tion of the exo-isomer.39 Subsequent Williamson ether
synthesis with tosylate 440 furnished the alkyne-bearing
norbornenyl derivative 5 in 74% yield which was subse-
quently coupled to 5-iododeoxyuridine 6 via Sonogashira
coupling to produce the nucleoside 7 (with 39% yield). The
phosphoramidite building block 1 was prepared using
standard DMT protection of 7 in 70% yield and phosphity-
lation of 8 to 1 using 2-cyanoethyl-N,N,N′,N′-tetraisopropyl-
phosphordiamidite (yield of 79%). Incorporation of the
norbornene phosphoramidite 1 into 9-mer oligonucleotides
via solid phase synthesis proceeded smoothly. However, an
oligonucleotides in solution and, more importantly, on solid
supports directly in oligonucleotide synthesizers, with high
efficiencies associated with the release of the angular strain
of the norbornene ring system of about 25.1 kJ/mol.37
To introduce norbornene linkers into oligonucleotides
(ODNs), we prepared the norbornene-modified uridine
(18) The described method allows us to triple label DNA using the Cu(I)-
catalyzed alkyne-azide click reaction: Gramlich, P. M. E.; Warncke, S.;
Gierlich, J.; Carell, T. Angew. Chem., Int. Ed. 2008, 47, 3442–3444.
(19) Agard, N. J.; Prescher, J. A.; Bertozzi, C. R. J. Am. Chem. Soc.
(30) Song, W.; Wang, Y.; Qu, J.; Lin, Q. J. Am. Chem. Soc. 2008, 130,
9654–9655.
2004, 126, 15046–15047
.
(20) Baskin, J. M.; Prescher, J. A.; Laughlin, S. T.; Agard, N. J.; Chang,
(31) Jaeger, V.; Colinas, P. A. Chem. Heterocycl. Compd. 2002, 59,
361–472.
P. V.; Miller, I. A.; Lo, A.; Codelli, J. A.; Bertozzi, C. R. Proc. Natl. Acad.
Sci. U.S.A. 2007, 104, 16793–16797
(21) Codelli, J. A.; Baskin, J. M.; Agard, N. J.; Bertozzi, C. R. J. Am.
Chem. Soc. 2008, 130, 11486–11493
(22) Laughlin, S. T.; Baskin, J. M.; Amacher, S. L.; Bertozzi, C. R.
Science 2008, 320, 664–667
(23) Lutz, J.-F. Angew. Chem., Int. Ed. 2008, 47, 2182–2184
(24) Sletten, E. M.; Bertozzi, C. R. Org. Lett. 2008, 10, 3097–3099
.
(32) Feuer, H. Nitrile oxides, nitrones & nitronates in organic synthesis:
noVel strategies in synthesis, 2nd ed.; John Wiley & Sons Inc.: Hoboken,
NJ, 2008; pp 1-128.
.
(33) Huisgen, R.; Seidel, M.; Wallbillich, G.; Knupfer, H. Tetrahedron
1962, 17, 3–29.
.
.
(34) Huisgen, R. Angew. Chem., Int. Ed. 1963, 2, 565–632.
(35) Bast, K.; Christl, M.; Huisgen, R.; Mack, W. Chem. Ber. 1973,
106, 3312–3344.
.
(25) Ning, X.; Guo, J.; Wolfert, M. A.; Boons, G. J. Angew. Chem.,
Int. Ed. 2008, 47, 2253–2255.
(36) Bast, K.; Christl, M.; Huisgen, R.; Mack, W.; Sustmann, R. Chem.
Ber. 1973, 106, 3258–3274.
(26) Blackman, M. L.; Royzen, M.; Fox, J. M. J. Am. Chem. Soc. 2008,
130, 13518–13519.
(37) Fliege, W.; Huisgen, R. Liebigs Ann. Chem. 1973, 2038–2047.
(38) Supporting Information.
(27) Devaraj, N. K.; Weissleder, R.; Hilderbrand, S. A. Bioconjugate
Chem. 2008, 19, 2297–2299.
(39) Raimundo, J.-M.; Lecomte, S.; Edelmann, M. J.; Concilio, S.;
Biaggio, I.; Bosshard, C.; Guenter, P.; Diederich, F. J. Mater. Chem. 2004,
14, 292–295.
(28) van Berkel, S. S.; Dirks, A. T. J.; Debets, M. F.; van Delft, F. L.;
Cornelissen, J. J. L. M.; Nolte, R. J. M.; Rutjes, F. P. J. T. ChemBioChem
2007, 8, 1504–1508
.
(40) Atkinson, R. S.; Grimshire, M. J. J. Chem. Soc., Perkin Trans. I
1986, 7, 1215–1224.
(29) van Berkel, S. S.; Dirks, A. T.; Meeuwissen, S. A.; Pingen, D. L.;
Boerman, O. C.; Laverman, P.; van Delft, F. L.; Cornelissen, J. J.; Rutjes,
(41) For a short description of ultramild DNA synthesis, see:Horten, B.
Nature 1998, 396, 391–392.
F. P. ChemBioChem 2008, 9, 1805–1815
.
2406
Org. Lett., Vol. 11, No. 11, 2009