V.G. Ramu et al. / Applied Catalysis A: General 431–432 (2012) 88–94
93
Interestingly, the dr value decreases to 80:20 with pipecolic acid
methyl ester, the higher homolog of proline: this observation is
in agreement with the already observed superior property of pro-
line as chiral inductor compared to pipecolic acid [46,47]. Further
increase in the distance of the chirality center from the amino
group, like in the case of nipecotic acid methyl ester, leads to almost
complete (dr of 65:35 with 2-methylbenzaldehyde) or complete (dr
of 55:45 with benzaldehyde) loss of diastereoselectivity.
for recording the TEM images, and to the technical staff at the
Anorganische Chemie I, Ruhr-Universität Bochum, for the GC–MS
analyses. Dr. T. Reinecke, Dr. M. Sanchez and Dr. R. Kar are gratefully
acknowledged for their technical help.
Appendix A. Supplementary data
Supplementary data associated with this article can be
One of the main advantages of using a heterogeneous catalyst in
a liquid-phase reaction is the ease of separation and reuse in sev-
eral runs. To test the recyclability of the Cu/NCNTs, we filtered off
the catalyst after a reaction run, washed and dried it at 100 ◦C for
1 h, then reused it for four repeated runs. The catalyst performance
was comparable until the fourth run, leading to aldehyde conver-
sions from 99% in the first run to 95% in the fourth one (Table S2).
Moreover, ICP analyses of copper in the reaction filtrates did not
detect the metal in any of the four runs, indicating the absence of
metal leaching. In contrast, in the fifth repeated run about 2% metal
leaching was observed, which was accompanied by a decrease in
aldehyde conversion (below 80%). Accordingly, the SEM image and
the EDX spectrum of the Cu/NCNTs recovered after the first run
show no chemical and morphological alterations, whereas those of
of the support (Fig. 7). The latter might be related to the possible
redox behavior of the catalyst in a free-radical-based mechanism, as
CNTs have recently been shown to be good free-radical scavengers
[48]. Moreover, due to prolonged air exposure during the recovery
steps, the presence of oxidized besides metallic copper cannot be
fully excluded.
References
[1] D.E. De Vos, M. Dams, B.F. Sels, P.A. Jacobs, Chem. Rev. 102 (2002)
3615–3640.
[2] M.J. Climent, A. Corma, S. Iborra, Chem. Rev. 111 (2011) 1072–1133.
[3] C. Bianchini, P. Barbaro, Top. Catal. 19 (2002) 17–32.
[4] D.J. Cole-Hamilton, Science 299 (2003) 1702–1706.
[5] M. Heitbaum, F. Glorius, I. Escher, Angew. Chem. Int. Ed. 45 (2006)
4732–4762.
[6] T. Matsumoto, M. Ueno, N. Wang, S. Kobayashi, Chem. Asian J. 3 (2008)
196–214.
[7] S. Wittmann, A. Schätz, R.N. Grass, W.J. Stark, O. Reiser, Angew. Chem. Int. Ed.
49 (2010) 1867–1870.
[8] D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chem. Rev. 106 (2006) 1105–1136
(and references therein).
[9] R. Czerw, M. Terrones, J.-C. Charlier, X. Blase, B. Foley, R. Kamalakaran, N.
Grobert, H. Terrones, D. Tekleab, P.M. Ajayan, W. Blau, M. Rühle, D.L. Carroll,
Nano Letters 1 (2001) 457–460.
[10] H.J. Burch, J.A. Davies, E. Brown, L. Hao, S. Antoranz Contera, N. Grobert, J.F.
Ryan, Appl. Phys. Lett. 89 (2006) 143110.
[11] G. Evano, N. Blanchard, M. Toumi, Chem. Rev. 108 (2008) 3054–3131.
[12] T. Mitsudome, Y. Mikami, K. Ebata, T. Mizugaki, K. Jitsukawa, K. Kaneda, Chem.
Commun. (2008) 4804–4806.
[13] A. Sarkar, T. Mukherjee, S. Kapoor, J. Phys. Chem. C 112 (2008) 3334–3340.
[14] M. Kidwai, N.K. Mishra, S. Bhardwaj, A. Jahan, A. Kumar, S. Mozumdar, Chem-
CatChem 2 (2010) 1312–1317.
4. Conclusions
[15] K. Yoshida, C. Gonzalez-Arellano, R. Luque, P.L. Gai, Appl. Catal. A: Gen. 379
(2010) 38–44.
[16] Z. Huang, F. Cui, H. Kang, J. Chen, X. Zhang, C. Xia, Chem. Mater. 20 (2008)
5090–5099.
[17] C. Gonzalez-Arellano, R. Luque, D.J. Macquarrie, Chem. Commun. (2009)
1410–1412.
[18] R. Takahashi, S. Sato, T. Sodesawa, M. Kato, S. Yoshida, J. Sol-Gel Sci. Technol.
19 (2000) 715–718.
[19] G.G. Wildgoose, C.E. Banks, R.G. Compton, Small 2 (2006) 182–193.
[20] M. Behrens, A. Furche, I. Kasatkin, A. Trunschke, W. Busser, M. Muhler, B. Kniep,
R. Fischer, R. Schlögl, ChemCatChem 2 (2010) 816–818.
[21] R.J. White, R. Luque, V.L. Budarin, J.H. Clark, D.J. Macquarrie, Chem. Soc. Rev. 38
(2009) 481–494.
[22] O. Bar-Am, T. Amit, O. Weinreb, M.B.H. Youdim, S. Mandel, J. Alzeihmer’s Dis.
21 (2010) 361–371.
[23] W.-J. Yoo, L. Zhao, C.-J. Li, Aldrichim. Acta 44 (2011) 43–51.
[24] V.A. Peshkov, O.P. Pereshivko, E.V. Van der Eycken, Chem. Soc. Rev. (2012),
[25] L. Shi, Y.Q. Tu, M. Wang, F.M. Zhang, C.A. Fan, Org. Lett. 6 (2004) 1001–1003.
[26] O.P. Pereshivko, V.A. Peshkov, E.V. Van der Eycken, Org. Lett. 12 (2010)
2638–2641.
[27] N. Gommermann, P. Knochel, Chem. Commun. (2004) 2324–2325.
[28] S.B. Park, H. Alper, Chem. Commun. (2005) 1315–1317.
[29] Q. Zhang, J.-X. Chen, W.-X. Gao, J.-C. Ding, H.-Y. Wu, Appl. Organometal. Chem.
24 (2010) 809–812.
[30] S. Wang, X. He, L. Song, Z. Wang, Synlett (2009) 447–450.
[31] K.K.R. Datta, B.V.S. Reddy, K. Ariga, A. Vinu, Angew. Chem. Int. Ed. 49 (2010)
5961–5965.
[32] X. Zhang, A. Corma, Angew. Chem. Int. Ed. 47 (2008) 4358–4361.
[33] M. Kidwai, V. Bansal, A. Kumar, S. Mozumdar, Green Chem. 9 (2007) 742–745.
[34] M. Kidwai, V. Bansal, N.K. Mishra, A. Kumar, S. Mozumdar, Synlett (2007)
1581–1584.
[35] G. Shore, W.J. Yoo, C.J. Li, M.G. Organ, Chem. Eur. J. 16 (2010) 126–133.
[36] P. Li, L. Wang, Tetrahedron 63 (2007) 5455–5459.
[37] P.R. Likhar, S. Roy, M. Roy, M.S. Subhas, M.L. Kantam, R.L. De, Synlett (2007)
2301–2303.
[38] M. Wang, P. Li, L. Wang, Eur. J. Org. Chem. (2008) 2255–2261.
[39] B. Sreedhar, P.S. Reddy, C.S.V. Krishna, P.V. Babu, Tetrahedron Lett. 48 (2007)
7882–7886.
We have prepared highly dispersed and catalytically active
metallic copper nanoparticles stabilized on NCNTs. The strong
interaction between the NCNTs and the copper nanoparticles
together with the protective effect of the solid support against
metal oxidation guarantees for high stability, recyclability and no
metal leaching at least for four runs. The latter aspect is par-
ticularly important for the development of synthetic methods
aiming at the synthesis of pharmaceutically relevant compounds
the copper nanoparticles on the NCNTs is straightforward and
clean, and it does not alter the catalytic activity of the metal, as
shown here for the A3-type coupling reaction. In comparison to the
allows reducing the amount of metal catalyst (4 mol% vs. 15 mol%)
system, copper ions immobilized on SiO2-CHDA [36], SiO2-NHC
[38], or on magnetite [42] could be reused in more cycles (up to
10–15) than when combined with ionic liquids [28], PEG [29], zeo-
lites [41], molecular sieve [40] or SiO2-Py [37] (3–5 cycles). The
recyclability of our NCNT-supported metallic copper nanoparti-
cles is comparable to that reported for non-supported ones [34]
(up to 5 cycles). Altogether, the catalytic and recycling features of
the Cu/NCNTs makes them an interesting tool for heterogeneous
copper-catalyzed organic reactions.
[40] A. Fodor, A. Kiss, N. Debreczeni, Z. Hell, I. Gresits, Org. Biomol. Chem. 8 (2010)
4575–4581.
Acknowledgements
[41] M.K. Patil, M. Keller, B.M. Reddy, P. Pale, J. Sommer, Eur. J. Org. Chem. (2008)
4440–4445.
[42] M.J. Aliaga, D.J. Ramon, M. Yus, Org. Biomol. Chem. 8 (2010) 43–46.
AB and TCN acknowledge the AvH foundation for postdoctoral
fellowship. We are grateful to Dr. B. Thomas (UPMC, Paris, France)