624
I. Ambrogio et al.
LETTER
(4) Bagnell, L.; Kreher, U.; Strauss, C. R. Chem. Commun.
2001, 29.
(5) Bouquillon, S.; Ganchegui, B.; Estrine, B.; Hénin, F.;
Muzart, J. J. Organomet. Chem. 2001, 634, 153.
NMR (376.5 MHz, CDCl3): d = –62.8. MS: m/e (rel. int.) =
202 (3) [M+], 133 (12), 69 (100), 57 (21), 51 (18).
(14) (a) Jeffery, T. J. Chem. Soc., Chem. Commun. 1984, 1287.
(b) Jeffery, T. Tetrahedron Lett. 1985, 26, 2667.
(6) Yonehara, K.; Mori, K.; Hashizume, T.; Chung, K.-G.; Ohe,
K.; Uemura, S. J. Organomet. Chem. 2000, 603, 40.
(7) Calò, V.; Nacci, A.; Monopoli, A.; Ferola, V. J. Org. Chem.
2007, 72, 2596.
(8) Amorese, A.; Arcadi, A.; Bernocchi, E.; Cacchi, S.; Cerrini,
S.; Fedeli, W.; Ortar, G. Tetrahedron 1989, 45, 813.
(9) Battistuzzi, G.; Cacchi, S.; Fabrizi, G. Synlett 2002, 439.
(10) (a) Battistuzzi, G.; Cacchi, S.; Fabrizi, G. Org. Lett. 2003, 5,
777. (b) Battistuzzi, G.; Cacchi, S.; Fabrizi, G.; Bernini, R.
Synlett 2003, 1133.
(15) For recent reviews on the palladium-catalyzed oxidation of
alcohols, see: (a) Muzart, J. Tetrahedron 2003, 59, 5789.
(b) Stoltz, B. M. Chem. Lett. 2004, 33, 362. (c) Sigman,
M. S.; Jensen, D. R. Acc. Chem. Res. 2006, 39, 221.
(16) Tamaru, Y.; Yamada, Y.; Inoue, K.; Yamamoto, Y.;
Yoshida, Z.-I. J. Org. Chem. 1983, 48, 1286.
(17) Blackburn, T. F.; Shwartz, J. J. Chem. Soc., Chem. Commun.
1977, 157.
(18) Rao, V. S.; Perlin, A. S. J. Org. Chem. 1982, 47, 367.
(19) One of the referees suggested that the alcohols 3 and 5 are
probably partly present as alkoxides (formed via
(11) Ambrogio, I.; Fabrizi, G.; Cacchi, S.; Henriksen, S. T.;
Fristrup, P.; Tanner, D.; Norrby, P.-O. Organometallics
2008, 27, 3187.
deprotonation by the acetate anions) that can either react
with HPdOAc or HPdI formed in the Heck reaction to
generate HPdOCH2R. b-Hydride elimination generates the
corresponding aldehyde and HPdH.
(12) (a) Battistuzzi, G.; Cacchi, S.; De Salve, I.; Fabrizi, G.;
Parisi, L. M. Adv. Synth. Catal. 2005, 347, 308.
(b) Battistuzzi, G.; Bernini, R.; Cacchi, S.; De Salve, I.;
Fabrizi, G. Adv. Synth. Catal. 2007, 349, 297.
(13) Typical Procedure for the Preparation of Cinnamyl
Alcohols – Preparation of 1b
(20) Cacchi, S.; Ciattini, P. G.; Morera, E.; Ortar, G. Tetrahedron
Lett. 1992, 33, 3073.
(21) (Z)-3-Phenyl-2-propen-1-ol was prepared via selective
hydrogenation of 3-phenyl-2-propyn-1-ol according to the
method described by: Denis, J.-N.; Greene, A. E.; Serra,
A. A.; Luche, M.-J. J. Org. Chem. 1986, 51, 46.
(22) Netherton, M.; Fu, G. C. Org. Lett. 2001, 3, 4295.
(23) Typical Procedure for the Preparation of (Z)-a-Aryl-
cinnamyl Alcohols – Preparation of 3c
A Carousel Reaction Tube (Radley Discovery), equipped
with a magnetic stirrer, was charged with 1-(trifluoro-
methyl)-3-iodobenzene (1.0 g, 3,68 mmol), methyl acrylate
(993 mL, 11,02 mmol), Et3N (1.53 mL, 11.02 mmol), and
Pd(OAc)2 (24.8 mg, 0.11 mmol) in DMF (4 mL). The
reaction mixture was warmed at 80 °C and stirred at the same
temperature for 1.5 h under argon. After cooling, the
reaction mixture was diluted with EtOAc, washed twice with
a NaCl solution, dried over Na2SO4, and concentrated under
reduced pressure. The residue was dissolved in toluene (4
mL), the resultant solution was cooled at –78 °C, DIBAL-H
(1 M in hexane, 8 mL, 8.08 mmol) was added, and the
reaction mixture was stirred at this temperature for 2 h under
argon. After this time the reaction mixture was warmed at
r.t., diluted with EtOAc, washed twice with a NaCl solution,
dried over Na2SO4, and concentrated under reduced
pressure. The residue was purified by chromatography on
SiO2 (n-hexane–EtOAc, 60:40) to afford 522 mg (70%
yield) of 1b as oil. IR (neat): 3343, 2925, 1440, 1332, 1124
cm–1; 1H NMR (400.13 MHz, CDCl3): d = 7.63 (s, 1 H), 7.55
(d, J = 7.6 Hz, 1 H), 7.50 (d, J = 7.7 Hz, 1 H), 7.45 (t, J = 7.6
Hz, 1 H), 6.67 (d, J = 16.0 Hz, 1 H), 6.45 (dt, J1 = 16.0 Hz,
J2 = 5.4 Hz, 1 H), 4.37 (t, J = 4.3 Hz, 2 H), 1.61 (br s, 1 H).
13C NMR (100.6 MHz, CDCl3): d = 137.6, 131.1 (q, J = 33.0
Hz), 130.7, 129.6, 129.4, 129.1, 124.20 (q, J = 3.7 Hz),
A Carousel Reaction Tube (Radley Discovery), equipped
with a magnetic stirrer, was charged with 1b (60 mg, 0.297
mmol), 4-iodanisole (104 mg, 0.445 mmol), Pd(OAc)2 (2
mg, 0.009 mmol), and n-Bu4NOAc (179 mg, 0.594 mmol) in
toluene (1 mL). The reaction mixture was warmed to 90 °C
and stirred at the same temperature for 24 h under argon.
After this time the reaction mixture was diluted with EtOAc,
washed twice with a NaCl solution, dried over Na2SO4, and
concentrated under reduced pressure. The residue was
purified by chromatography on SiO2 (n-hexane–EtOAc,
85:15) to afford 72 mg (79% yield) of 3c. Mp 80–82 °C. IR
(KBr): 3297, 2923, 1606, 1513, 1330 cm–1. 1H NMR (400.13
MHz, CDCl3): d = 7.68 (s, 1 H), 7.63 (d, J = 8.0 Hz, 1 H),
7.56–7.54 (m, 4 H), 6.68 (d, J = 12.0 Hz, 2 H), 6.92 (s, 1 H),
4.67 (s, 2 H), 3.86 (s, 3 H), 1.58 (br s, 1 H). 13C NMR (100.6
MHz,CDCl3): d = 159.6, 141.0, 137.8, 132.3, 132.0, 130.7
(q, J = 32.0 Hz), 128.7, 128.1, 127.7, 125.6 (q, J = 3.8 Hz),
124.0 (q, J = 272.6 Hz), 123.7 (q, J = 3.8 Hz), 114.1, 60.1,
55.2. 19F (376.5 MHz, CDCl3): d = –62.6. MS: m/e (rel. int.):
308 (4) [M+], 145 (4), 89 (12), 77 (16), 59 (100), 51 (26).
124.2 (q, J = 272.3 Hz), 123.19 (q, J = 3.8 Hz), 63.4. 19
F
Synlett 2009, No. 4, 620–624 © Thieme Stuttgart · New York