LETTER
1,6-Conjugate Addition of Boronic Acids to 2-Allylidenemalonates
587
R2B(OH)2
Z
Z
Z
R2
R2
Pd(acac)2
Cu(BF4)2
dppben
R1
1a, 2a
R1
R1
6
3
1a Z, R1 = CO2Et
2a Z = CO2Bn, R1 = H
Scheme 3
Chem. Int. Ed. 2005, 44, 4721. (f) Fillion, E.; Wilsily, A.;
Liao, E. T. Tetrahedron: Asymmetry 2006, 17, 2957.
(g) Bernardi, L.; López-Cantarero, J.; Niess, B.; Jørgensen,
K. A. J. Am. Chem. Soc. 2007, 129, 5772. (h) Hartog, T.;
Harutyunyan, S. R.; Font, D.; Minnaard, A. J.; Feringa, B. L.
Angew. Chem. Int. Ed. 2008, 47, 398. (i) Okada, S.;
Arayama, K.; Murayama, R.; Ishizuka, T.; Hara, K.; Hirone,
N.; Hata, T.; Urabe, H. Angew. Chem. Int. Ed. 2008, 47,
6860; and references cited therein.
catalyzed addition, the position of the new C=C double
bond in the final product can be tuned with the choice of
the base, allowing the synthesis of either vinylmalonates
or alkylidenemalonates.18
Table 2 Pd2+-Catalyzed Addition of R2B(OH)2 to 1 and 2
Entry 1, 2
Z
R1
R2
Yield of 3 and 5
(%)a
(5) For a recent example of the 1,6-addition to related
diunsaturated nitrodienes, see: Belot, S.; Massaro, A.; Tenti,
A.; Mordini, A.; Alexakis, A. Org. Lett. 2008, 10, 4557.
(6) (a) Hayashi, T.; Yamamoto, S.; Tokunaga, N. Angew. Chem.
Int. Ed. 2005, 44, 4224. (b) For an intramolecular version
using related pinacol boronate esters, see: Tseng, N.-W.;
Mancuso, J.; Lautens, M. J. Am. Chem. Soc. 2006, 128,
5338.
1
2
3
4
5
2a
2a
1a
1a
1a
CO2Bn
CO2Bn
H
H
C6H5CH=CH 5a 45
Ph
5b 40
CO2Et CO2Et Ph
(E)-3a 70
(E)-3c 55
CO2Et CO2Et 4-MeOC6H4
(7) De la Herrán, G.; Murcia, C.; Csákÿ, A. G. Org. Lett. 2005,
7, 5629.
CO2Et CO2Et C6H5CH=CH (E)-3d 60
a Isolated yield after silica gel chromatography.
(8) For a related IrI-catalyzed conjugate addition of boroxines to
diunsaturated carbonyl compounds, see: Nishimura, T.;
Yasuhara, Y.; Hayashi, T. Angew. Chem. Int. Ed. 2006, 45,
5164.
Acknowledgment
(9) The synthesis of 1a was carried out by reaction of diethyl
malonate with acrolein (LiBr, Ac2O) by a literature
procedure: Sylla, M.; Joseph, D.; Chevallier, E.; Camara, C.;
Dumas, F. Synthesis 2006, 1045; compound 1b was prepared
similarly using cinnamaldehyde (80%)..
Projects UCM-BSCH PR34-07-15878, UCM GR74/07-910815,
and CTQ2006-15279-C03-01 are gratefully acknowledged for
financial support. Prof. J. Plumet (UCM) is thanked for his valuable
discussions about the paper.
(10) General Procedure for the RhI-Catalyzed Addition of
Boronic Acids to 1a with NaHCO3 as Base (Table 1,
Entries 1–7)
References and Notes
To a mixture of boronic acid (2.0 equiv, 0.32 mmol) and
[Rh(cod)Cl]2 (5% Rh, 2.0 mg, 0.004 mmol) under Ar was
added a solution of 1a (1.0 equiv, 34 mg, 0.16 mmol) in
dioxane–H2O (6:1, 0.5 mL) followed by NaHCO3 (0.1
equiv, 2.7 mg, 0.032 mmol). The mixture was stirred at
50 °C for 18 h. Evaporation under vacuum afforded the
crude reaction products, which were purified by column
chromatography (hexane–EtOAc, 85:15).
(1) See, for example: (a) Perlmutter, P. In Conjugate Addition
Reactions in Organic Synthesis; Pergamon: Oxford, 1992.
(b) Tomioka, K.; Nagaoka, Y. In Comprehensive
Asymmetric Catalysis, Vol. 3; Jacobsen, E. N.; Pfaltz, A.;
Yamamoto, H., Eds.; Springer: Berlin, 1999, Ch. 31.1.
(c) Kanai, M.; Shibasaki, M. In Catalytic Asymmetric
Synthesis, 2nd ed.; Ojima, I., Ed.; Wiley: New York, 2000,
569. (d) Sibi, M. P.; Manyem, S. Tetrahedron 2000, 56,
8033. (e) Krause, N.; Hoffmann-Röder, A. Synthesis 2001,
171. (f) Lipshutz, B. H. In Organometallics in Organic
Synthesis. A Manual, 2nd ed.; Schlosser, M., Ed.; Wiley:
Chichester, 2002, 665; and references cited therein.
(2) First report: Sakai, M.; Hayashi, H.; Miyaura, N.
Organometallics 1997, 16, 4229.
(3) Reviews: (a) Hayashi, T. Synlett 2001, 879. (b) Fagnou, K.;
Lautens, M. Chem. Rev. 2003, 103, 169. (c) Hayashi, T.;
Yamasaki, K. Chem. Rev. 2003, 103, 2829. (d) Hayashi, T.
Pure Appl. Chem. 2004, 76, 465. (e) Hayashi, T. Bull.
Chem. Soc. Jpn. 2004, 77, 13. (f) Yoshida, K.; Hayashi, T.
In Modern Rhodium-Catalyzed Organic Reactions; Evans,
P. A., Ed.; Wiley-VCH: Weinheim, 2005, Chap. 3, 55.
(4) For recent leading references, see: (a) Fredrick, M. A.;
Hulce, M. Tetrahedron 1997, 53, 10197. (b) Krause, N.;
Gerold, A. Angew. Chem., Int. Ed. Engl. 1997, 36, 186.
(c) Krause, N.; Thorand, S. Inorg. Chim. Acta 1999, 296, 1.
(d) Fukuhara, K.; Urabe, H. Tetrahedron Lett. 2005, 46,
603. (e) Yoshikai, N.; Yamashita, T.; Nakamura, E. Angew.
(11) General Procedure for the RhI-Catalyzed Addition of
Boronic Acids to 1a and 2a with Et3N as Base (Table 1,
Entries 8–15)
To a mixture of boronic acid (2.0 equiv, 0.32 mmol) and
[Rh(cod)Cl]2 (5% Rh, 2.0 mg, 0.004 mmol) under Ar was
added a solution of 1a or 2a (1.0 equiv, 0.16 mmol) in
dioxane–H2O (10:1, 0.5 mL) followed by Et3N (1.0 equiv,
16.2 mg, 22 mL, 0.16 mmol). The mixture was stirred at
25 °C for 18 h. Evaporation under vacuum afforded the
crude reaction products, which were purified by column
chromatography (hexane–EtOAc, 85:15).
(12) We have confirmed that isomerization of compounds 3 to 4
is a base-promoted process: treatment of compound (E)-3d
in dioxane–H2O (10:1) with Et3N (1.0 equiv) at r.t. (18 h)
afforded 4d (90% isolated yield).
(13) General Procedure for the RhI-Catalyzed Addition of
Boronic Acids to 1b,c and 2b with Ba(OH)2 as Base
(Table 1, Entries 16–19)
To a mixture of boronic acid (2.0 equiv, 0.34 mmol) and
Synlett 2009, No. 4, 585–588 © Thieme Stuttgart · New York