1970
N.C. Romeiro et al. / European Journal of Medicinal Chemistry 44 (2009) 1959–1971
[19] D. Riendeau, M.D. Percival, C. Brideau, S. Charleson, D. Dube´, D. Ethier,
J.P. Falgueyret, R.W. Friesen, R. Gordon, G. Greig, J. Pharmacol. Exp. Ther. 296
(2001) 558–566.
[20] J.M. Dogne, C.T. Supuran, D. Pratico, J. Med. Chem. 48 (2005) 2251–2257.
[21] D.H. Solomon, Arthritis Rheum. 52 (2005) 1968–1978.
[22] B. Arun, P. Goss, Semin. Oncol. 2 (2004) 22–29.
attributed to the protein atoms [68]. The first step in the generation
of suitable protein structures for the ensemble superimposition is
the deletion of extra chains. In this work, chains A were kept while
the others were deleted. Next, Biopolymer protein analysis tool was
used, in a stepwise process of analysis and correction of geometry
parameters. For each structure, the description of an ensemble
contains the definition of the protein atoms, the resolution of
ambiguities in the PDB file, the location of hydrogen atoms at
hetero atoms, and the definition of the active site atoms. The
assignment of hydrogen positions has been made on the basis of
default rules. The side-chains of lysine, arginine and the carbox-
ylate groups of aspartic and glutamic acids have been modeled in
their ionized states. Water molecules contained in the PDB file have
been removed. Finally, the active site of the ensemble has been
defined as the collection of residues within 10.0 Å of the bound
inhibitor and comprised the union of all ligands of the ensemble. All
atoms located less than 10.0 Å from any ligand atom were consid-
ered. 1PXX was used as a reference structure for the united protein
preparation in COX-1 studies, while 1CX2 was used as a reference in
COX-2 studies.
[23] L.R. Howe, Breast Cancer Res. 9 (2007) 210.
[24] R.E. Harris, J. Beebe-Donk, G.A. Alshafie, BMC Cancer 6 (2006) 27–31.
[25] R.E. Harris, J. Beebe-Donk, H. Doss, D. Burr Doss, Oncol. Rep. 13 (2005)
559–583.
[26] D.W. McFadden, D.R. Riggs, B.J. Jackson, C. Cunningham, Int. J. Oncol. 29 (2006)
1019–1023.
[27] M.M. Taketo, J. Natl. Cancer Inst. 90 (1998) 1529–1536.
[28] M.M. Taketo, J. Natl. Cancer Inst. 90 (1998) 1609–1620.
[29] N. Babbar, N.A. Ignatenko, R.A. Casero Jr., E.W. Gerner, J. Biol. Chem. 278 (2003)
47762–47775.
[30] G.A. Piazza, D.S. Alberts, L.J. Hixson, N.S. Paranka, H. Li, T. Finn, C. Bogert,
J.M. Guillen, K. Brendel, P.H. Gross, G. Sperl, J. Ritchie, R.W. Burt, L. Ellsworth,
D.J. Ahnen, R. Pamukcu, Cancer Res. 57 (1997) 2909–2915.
[31] A.S. Kalgutkar, A.B. Marnett, B.C. Crews, R.P. Remmel, L.J. Marnett, J. Med.
Chem. 43 (2000) 2860–2870.
[32] A.S. Kalgutkar, B.C. Crews, S. Saleh, D. Prudhomme, L.J. Marnett, Bioorg. Med.
Chem. 13 (2005) 6810–6822.
[33] S. Khanna, M. Madan, A. Vangoori, R. Banerjee, R. Thaimattam, S.K. Jafar Sadik
Basha, M. Ramesh, S.R. Casturi, M. Pal, Bioorg. Med. Chem. 14 (2006)
4820–4833.
[34] A.S. Kalgutkar, B.C. Crews, S.W. Rowlinson, A.B. Marnett, K.R. Kozak,
R.P. Remmel, L.J. Marnett, Proc. Natl. Acad. Sci. USA 97 (2000) 925–930.
[35] A.S. Kalgutkar, S.W. Rowlinson, B.C. Crews, L.J. Marnett, Bioorg. Med. Chem.
Lett. 12 (2002) 521–524.
[36] E.J. Barreiro, M.E. Lima, Braz. J. Med. Biol. Res. 22 (1989) 1415–1419.
[37] E. Gourzoulidou, M. Carpintero, P. Baumhof, A. Giannis, H. Waldmann,
ChemBioChem 6 (2005) 527–531.
4.3.4. Lipinski’s rule of five
CLOGP, the log of the octanol/water partition coefficient, was
calculated with the CLOGP software [62]. PSA and molecular weight
calculations have been performed with the MOLPROP facility,
available in the QSAR module of Sybyl 7.3 [65].
[38] D.E. Duggan, K.F. Hooke, S.S. Hwang, Drug Metab. Dispos.
241–246.
8 (1980)
[39] J.T. Lim, G.A. Piazza, E.K. Han, T.M. Delohery, H. Li, T.S. Finn, R. Buttyan,
H. Yamamoto, G.J. Sperl, K. Brendel, P.H. Gross, R. Pamukcu, I.B. Weinstein,
Biochem. Pharmacol. 58 (1999) 1097–1107.
Acknowledgements
[40] J.B. Nixon, H. Kamitanib, S.J. Baeka, T.E. Eling, Prostaglandins Leukot. Essent.
Fatty Acids 68 (2003) 323–330.
The authors wish to thank IM-INOFAR (#420.015/2005-1, Br),
PRONEX (Br), CNPq (Br), FAPERJ (Br), FUJB (Br) for financial support
and fellowships (to ALPM, EJB, CAMF and NCR).
[41] Y. Niitsu, T. Takayama, K. Miyanishi, A. Nobuoka, T. Hayashi, T. Kukitsu,
K. Takanashi, H. Ishiwatari, T. Abe, T. Kogawa, M. Takahashi, T. Matsunaga,
J. Kato, Cancer Chemother. Pharmacol. 54 (2004) S40–S43.
[42] K. Gwyn, F.A. Sinicrope, Am. J. Gastroenterol. 97 (2002) 13–21.
[43] B. Jung, V. Barbier, H. Brickner, J. Welsh, A. Fotedar, M. McClelland, Cancer Lett.
219 (2005) 15–25.
References
[44] S.W. Rowlinson, J.R. Kiefer, J.J. Prusakiewicz, J.L. Pawlitz, K.R. Kozak,
A.S. Kalgutkar, W.C. Stallings, R.G. Kurumbail, L.J. Marnett, J. Biol. Chem. 278
(2003) 45763–45769.
[45] R.G. Kurumbail, A.M. Stevens, J.K. Gierse, J.J. McDonald, R.A. Stegeman, J.Y. Pak,
D. Gildehaus, J.M. Miyashiro, T.D. Penning, K. Seibert, P.C. Isakson,
W.C. Stallings, Nature 384 (1996) 644–648.
[1] J.R. Vane, Nature 231 (1971) 232–235.
[2] P.M. Brooks, R.O. Day, New Engl. J. Med. 324 (1991) 1716–1725.
[3] J.Y. Fu, J.L. Masferrer, K. Seibert, A. Raz, P.J. Needleman, Biol. Chem. 265 (1990)
16737–16740.
[4] W. Xie, J.G. Chipman, D.L. Robertson, R.L. Erikson, D.L. Simmons, Proc. Natl.
Acad. Sci. 88 (1991) 2692–2696.
[46] K. Gupta, B.S. Selinsky, C.J. Kaub, A.K. Katz, P.J. Loll, J. Mol. Biol. 335 (2004)
503–518.
[5] J.A. Mitchell, P. Akarasereenont, G. Thiemermann, R.J. Flower, J.R. Vane, Proc.
Natl. Acad. Sci. 90 (1993) 11693–11697.
[6] J.R. Vane, R.M. Botting, Inflamm. Res. 44 (1995) 1–10.
[47] B.S. Selinsky, K. Gupta, C.T. Sharkey, P.J. Loll, Biochemistry 40 (2001)
5172–5180.
[48] P.J. Loll, D. Picot, O. Ekabo, R.M. Garavito, Biochemistry 35 (1996)
7330–7340.
[7] D.L. Simmons, R.M. Botting, T. Hla, Pharmacol. Rev. 56 (2004) 387–437.
[8] D.E. Duggan, K.F. Hooke, E.A. Risley, T.Y. Shen, C.G. Arman, Pharmacol. Exp.
Ther. 201 (1977) 8–13.
[49] H. Clau
ben, C. Buning, M. Rarey, T. Lengauer, J. Mol. Biol. 308 (2001)
[9] W.E. Sneader, Br. Med. J. 321 (2000) 1591–1594.
377–395.
[10] E.A. Meade, W.L. Smith, D.L. DeWitt, J. Biol. Chem. 268 (1993) 6610–6614.
[11] T.Y. Shen, R.L. Ellis, T.B. Windholz, A.R. Matzuk, A. Rosegay, S. Lucas, B.E. Witzel,
C.H. Stammer, A.N. Wilson, F.W. Holly, J.B. Willett, L.H. Sarett, W.J. Holtz,
C.A. Winter, E.A. Risley, G.W. Nuss, J. Am. Chem. Soc. 85 (1963) 488–489.
[12] A. Zarghi, P.N.P. Rao, E.E. Knaus, Bioorg. Med. Chem. 15 (2007) 1056–1061.
[13] M. Biava, G.C. Porretta, G. Poce, S. Supino, S. Forli, M. Rovini, A. Cappelli,
F. Manetti, M. Botta, L. Sautebin, A. Rossi, C. Pergola, C. Ghelardini, E. Vivoli,
F. Makovec, P. Anzellotti, P. Patrignani, M. Anzini, J. Med. Chem. 50 (2007)
5403–5411.
[50] C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Adv. Drug Deliv. Rev. 46
(2001) 3–25.
[51] B.M. Trost, D.P. Curran, Tetrahedron Lett. 22 (1981) 1287–1290.
[52] T. Barf, J. Vallgarda, R. Emond, C. Ha¨ggstro¨m, E. Mosialou, K. Axelsson,
¨
R. Olsson, L. Engblom, N. Edling, Y. Ro¨nquist-Nii, B. Ohman, P. Alberts,
L. Abrahmse´n, J. Med. Chem. 45 (2002) 3813–3815.
[53] N.D. Karis, W.A. Loughlin, I.D. Jenkins, Tetrahedron 63 (2007)
12303–12309.
[54] I.G. Ribeiro, K.C.M. Silva, S.C. Parrini, A.L.P. Miranda, C.A.M. Fraga, E.J. Barreiro,
Eur. J. Med. Chem. 33 (1998) 225–235.
[55] C.C. Chan, S. Boyce, C. Brideau, A.W. Fordhutchinson, R. Gordon, D. Guay,
R.G. Hill, C.S. Li, J. Mancini, M. Penneton, J. Pharmacol. Exp. Ther. 274 (1995)
1531–1537.
[56] L.M. Lima, E.J. Barreiro, Curr. Med. Chem. 12 (2005) 23–49.
[57] V. Quidville, N. Segond, S. Lausson, M. Frenkian, R. Cohen, A. Jullienne, Pros-
taglandins Other Lipid Mediat. 81 (2006) 14–30.
[58] J.J.P. Stewart, J. Comput. Chem. 10 (1989) 209–220.
[59] R. Pouplana, J.J. Lozano, C. Pe´rez, J. Ruiz, J. Comput. Aided Mol. Des. 16 (2002)
683–709.
[14] W.C. Black, C. Brideau, C.-C. Chan, S. Charleson, N. Chauret, D. Claveau,
D. Ethier, R. Gordon, G. Greig, J. Guay, G. Hughes, P. Jolicoeur, Y. Leblanc,
D. Nicoll-Griffith, N. Ouimet, D. Riendeau, D. Visco, Z. Wang, L. Xu, P. Prasit, J.
Med. Chem. 42 (1999) 1274–1281.
[15] F. Julemont, X. de Leval, C. Michaux, J.-F. Renard, J.-Y. Winum, J.-L. Montero,
J. Damas, J.-M. Dogne, B. Pirotte, J. Med. Chem. 47 (2004) 6749–6759.
[16] T.D. Penning, J.J. Talley, S.R. Bertenshaw, J.S. Carter, P.W. Collins, S. Docter,
M.J. Graneto, L.F. Lee, J.W. Malecha, J.M. Miyashiro, R.S. Rogers, D.J. Rogier,
S.S. Yu, G.D. Anderson, E.G. Burton, J.N. Cogburn, S.A. Gregory, C.M. Koboldt,
W.E. Perkins, K. Seibert, A.W. Veenhuizen, Y.Y. Zhang, P.C. Isakson, J. Med.
Chem. 40 (1997) 1347–1365.
[60] J.R. Kiefer, J.L. Pawlitz, K.T. Moreland, R.A. Stegeman, W.F. Hood, J.K. Gierse,
A.M. Stevens, D.C. Goodwin, S.W. Rowlinson, L.J. Marnett, W.C. Stallings,
R.G. Kurumbail, Nature 405 (2000) 97–101.
[61] D.E. Clark, S.D. Pickett, DDT 5 (2000) 49–57.
[62] J. Chow, P. Jurs, J. Chem. Inf. Comput. Sci. 19 (1979) 172–178.
[17] X. De Leval, F. Julemont, V. Benoit, M. Frederich, B. Pirotte, J.M. Dogne, Mini
Rev. Med. Chem. 4 (2004) 597–601.
[18.] J.J. Talley, D.L. Brown, J.S. Carter, M.J. Graneto, C.M. Koboldt, J.L. Masferrer,
W.E. Perkins, R.S. Rogers, A.F. Shaffer, Y.Y. Zhang, B.S. Zweifel, K. Seibert, J.
Med. Chem. 43 (2000) 775–777.