3396 Journal of Medicinal Chemistry, 2009, Vol. 52, No. 10
Sato et al.
Inhibitors of Hepatitis C Virus Full-Length NS3 (Protease-Helicase/
NTPase): Model Compounds towards Small Molecule Inhibitors.
Bioorg. Med. Chem. 2003, 11, 2955–2963. (c) Compound 8 was
synthesized following the synthetic procedure described for 7 (see
Supporting Information for details). (d) Hwang, D. R.; Helquist, P.;
Shekhani, M. S. Total Synthesis of (+)-Sparsomycin. Approaches
using Cysteine and Serine Inversion. J. Org. Chem. 1985, 50, 1264–
1271.
References
(1) Tatemoto, K.; Carlquist, M.; Mutt, V. Neuropeptide YsA Novel Brain
Peptide with Structural Similarities to Peptide YY and Pancreatic
Polypeptide. Nature 1982, 296, 659–660.
(2) Beck, B.; Jhanwar-Uniyal, M.; Burlet, A.; Chapleur-Chateau, M.;
Leibowitz, S. F.; Burlet, C. Rapid and Localized Alterations of
Neuropeptide Y in Discrete Hypothalamic Nuclei with Feeding Status.
Brain Res. 1990, 528, 245–249.
(3) Sahu, A.; White, J. D.; Kalra, P. S.; Kalra, S. P. Hypothalamic
Neuropeptide Y Gene Expression in Rats on Scheduled Feeding
Regimen. Mol. Brain Res. 1992, 15, 15–18.
(4) Stanley, B. G.; Kyrkoulim, S. E.; Lampert, S.; Leibowitz, S. F.
Neuropeptide Y Chronically Injected into the Hypothalamus: A
Powerful Neurochemical Inducer of Hyperphagia and Obesity. Pep-
tides 1986, 7, 1189–1192.
(16) For a related synthetic method for the cyclization of aminoalcohols,
see: Katagiri, T.; Takahashi, M.; Fujiwara, Y.; Ihara, H.; Uneyama,
K. General Syntheses of Optically Active -Trifluoromethylated Amines
via Ring-Opening Reactions of N-Benzyl-2-trifluoromethylaziridine.
J. Org. Chem. 1999, 64, 7323–7329.
(17) Saito, M.; Kayama, Y.; Watanabe, T.; Fukushima, H.; Hara, T.;
Koyano, K.; Takenaka, A.; Sasada, Y. Synthesis and Immunological
Activity of 5,6,6a,8,9,11a-Hexahydronaphth[1′,2′:4,5]imidazo[2,1-
b]thiazoles and 5,6,6a,9,10,11a-hexahydronaphth[2′,1′:4,5]imidazo[2,1-
b]thiazoles. J. Med. Chem. 1980, 23, 1364–1372.
(18) Throughout the conversion of 11 to 14, the stereochemistry of the R1
substituent is preserved. For instance, the enantiomeric excess of 14a
was determined to be 99.5% ee by HPLC.
(19) Bastero, A.; Claver, C.; Ruiz, A.; Castillo´n, S.; Daura, E.; Bo, C.;
Zangrando, E. Insights into CO/Styrene Copolymerization by Using
PdII Catalysts Containing Modular Pyridine-Imidazoline Ligands.
Chem.sEur. J. 2004, 10, 3747–3760.
(5) Erickson, J. C.; Hollopeter, G.; Palmiter, R. D. Attenuation of the
Obesity Syndrome of ob/ob Mice by the Loss of Neuropeptide Y.
Science 1996, 274, 1704–1707.
(6) Blomqvist, A. G.; Herzog, H. Y-Receptor SubtypessHow Many
More? Trends Neurosci. 1997, 20, 294–298.
(7) Sato, N.; Takahashi, T.; Shibata, T.; Haga, Y.; Sakuraba, A.; Hirose,
M.; Sato, M.; Nonoshita, K.; Koike, Y.; Kitazawa, H.; Fujino, N.;
Ishii, Y.; Ishihara, A.; Kanatani, A.; Fukami, T. Design and Synthesis
of the Potent, Orally Available, Brain-Penetrable Arylpyrazole Class
of Neuropeptide Y5 Receptor Antagonists. J. Med. Chem. 2003, 46,
666–669.
(8) (a) Ishihara, A.; Kanatani, A.; Mashiko, S.; Tanaka, T.; Hidaka, M.;
Gomori, A.; Iwaasa, H.; Murai, N.; Egashira, S.; Murai, T.; Mitobe,
Y.; Matsushita, H.; Okamoto, O.; Sato, N.; Jitsuoka, M.; Fukuroda,
T.; Ohe, T.; Guan, X.; MacNeil, D. J.; Van der Ploeg, L. H. T.;
Nishikibe, M.; Ishii, Y.; Ihara, M.; Fukami, T. A Neuropeptide Y Y5
Antagonist Selectively Ameliorates Body Weight Gain and Associated
Parameters in Diet-Induced Obese Mice. Proc. Natl. Acad. Sci. U.S.A.
2006, 103, 7154–7158. (b) Mashiko, S.; Ishihara, A.; Iwaasa, H.;
Moriya, R.; Kitazawa, H.; Mitobe, Y.; Ito, J.; Gomori, A.; Matsushita,
H.; Takahashi, T.; Macneil, D. J.; Van der Ploeg, L. H. T.; Fukami,
T.; Kanatani, A. Effects of a Novel Y5 Antagonist in Obese Mice:
Combination with Food Restriction or Sibutramine. Obesity 2007, 16,
1510–1515.
(9) Kanatani, A.; Mashiko, S.; Murai, N.; Sugimoto, N.; Ito, J.; Fukuroda,
T.; Fukami, T.; Morin, N.; MacNeil, D. J.; Van der Ploeg, L. H. T.;
Saga, Y.; Nishimura, S.; Ihara, M. Role of Y1 Receptor in the
Regulation of Neuropeptide Y-Mediated Feeding Regulation: Com-
parison of Wild-Type, Y1 Receptor-deficient, and Y5 Receptor-
deficient Mice. Endocrinology 2000, 141, 1011–1016.
(10) Mashiko, S.; Ishihara, A.; Iwaasa, H.; Sano, H.; Oda, Z.; Ito, J.;
Yumoto, M.; Okawa, M.; Suzuki, J.; Fukuroda, T.; Jitsuoka, M.; Morin,
N. R.; MacNeil, D. J.; Van der Ploeg, L. H. T.; Ihara, M.; Fukami,
T.; Kanatani, A. Characterization of Neuropeptide Y (NPY) Y5
Receptor-Mediated Obesity in Mice: Chronic Intracerebroventricular
Infusion of D-Trp34NPY. Endocrinology 2003, 144, 1793–1801.
(11) (a) Dax, S. L. Small-molecule Neuropeptide Y Y5 Antagonists. Drugs
Future 2002, 27, 273–287. (b) Levens, N. R.; Della-Zuana, O.
Neuropeptide Y Y5 Receptor Antagonists as Anti-Obesity Drugs. Curr.
Opin. InVest. Drugs 2003, 4, 1198–1204. (c) Ishihara, A.; Moriya,
M.; MacNeil, D. J.; Fukami, T.; Kanatani, A. Neuropeptide Y
Receptors as Targets of Obesity Treatment. Expert Opin. Ther. Pat.
2006, 16, 1701–1712. (d) MacNeil, D. J. NPY Y1 and Y5 Receptor
Selective Antagonists as Anti-Obesity Drugs. Curr. Top. Med. Chem.
2007, 7, 1721–1733.
(12) Erondu, N.; Gantz, I.; Musser, B.; Suryawanshi, S.; Mallick, M.; Addy,
C.; Cote, J.; Bray, G.; Fujioka, K.; Bays, H.; Hollander, P.; Sanabria-
Boho´rquez, S. M.; Eng, W.; Långstro¨m, B.; Hargreaves, R. J.; Burns,
D. J.; Kanatani, A.; Fukami, T.; MacNeil, D. J.; Gottesdiener, K. M.;
Amatruda, J. M.; Kaufman, K. D.; Heymsfield, S. B. Neuropeptide
Y5 Receptor Antagonism Dose Not Induce Clinically Meaningful
Weight Loss in Overweight and Obese Adults. Cell Metab. 2006, 4,
275–282.
(13) Sato, N.; Jitsuoka, M.; Ishikawa, S.; Nagai, K.; Tsuge, H.; Ando, M.;
Okamoto, O.; Iwaasa, H.; Gomori, A.; Ishihara, A.; Kanatani, A.;
Fukami, T. Discovery of Substituted 2,4,4-triarylimidazoline Deriva-
tives as Potent and Selective Neuropeptide Y Y5 Receptor Antagonists.
Bioorg. Med. Chem. Lett. 2009, 19, 1670–1674.
(14) Testai, L.; Bianucci, A. M.; Massarelli, I.; Breschi, M. C.; Martinotti,
E.; Calderone, V. Torsadogenic Cardiotoxicity of Antipsychotic Drugs:
a Structural Feature, Potentially Involved in the Interaction with
Cardiac HERG Potassium Channels. Curr. Med. Chem. 2004, 11,
2691–2706.
(15) (a) Gołebiowski, A.; Jacobsson, U.; Jurczak, J. High Pressure Approach
to the Total Synthesis of 6-EPI-D-purpurosamine B. Tetrahedron 1987,
43, 3063–3066. (b) Oscarsson, K.; Poliakov, A.; Oscarson, S.;
Danielson, U. H.; Hallberg, A.; Samuelsson, B. Peptide-Based
(20) Whelan, B.; Iriepa, I.; Galvez, E. Synthesis of 2′-Arylazabicyclo-3-
spiro-4′(5′)-imidazolines. Synthesis 1994, 832–836.
(21) 23 and 24 were prepared from 18 and 21a by coupling with
chloroacetyl chloride; see Experimental Section for details.
(22) Butcher, J. W.; Claremon, D. A.; Connolly, T. M.; Dean, D. C.;
Karczewski, J.; Koblan, K. S.; Kostura, M. J.; Liverton, N. J.; Melillo,
D. G. Radioligand and Binding Assay. World Patent Application WO
02/05860, 2002.
(23) Shibata, Y.; Takahashi, H.; Ishii, Y. A convenient in vitro screening
method for predicting in vivo drug metabolic clearance using isolated
hepatocytes suspended in serum. Drug Metab. Dispos. 2000, 28, 1518–
1523.
(24) Dohta, Y.; Yamashita, T.; Horiike, S.; Nakamura, T.; Fukami, T. A
System for Log D Screening of 96-Well Plates Using a Water-Plug
Aspiration/Injection Method Combined with High-Performance Liquid
ChromatographysMass Spectrometry. Anal. Chem. 2007, 79, 8312–
8315.
(25) (a) Jamieson, C.; Moir, E. M.; Rankovic, Z.; Wishart, G. Medicinal
Chemistry of hERG Optimizations: Highlights and Hang-Ups. J. Med.
Chem. 2006, 49, 5029–5046. (b) Fraley, M. E.; Arrington, K. L.; Buser,
C. A.; Ciecko, P. A.; Coll, K. E.; Fernandes, C.; Hartman, G. D.;
Hoffman, W. F.; Lynch, J. J.; McFall, R. C.; Rickert, K.; Singh, R.;
Smith, S.; Thomas, K. A.; Wong, B. K. Optimizations of the Indolyl
Quinolinone Class of KDR (VEGFR-2) Kinase Inhibitors: Effects of
5-Amino- and 5-Sulphonamide-indolyl Groups on Pharmacokinetics
and hERG Binding. Bioorg. Med. Chem. Lett. 2004, 14, 351–355.
(26) It is known that the CYP3A4 inhibitory activity of pyridine structures
can be attenuated through direct steric effects or electronic substitution,
resulting in a modulation of the pKa of the pyridine nitrogen. Riley,
R. J.; Parker, A. J.; Trugg, S.; Manners, C. N. Development of a
Generalized, Quantitative Physicochemical Model of CYP3A4 Inhibi-
tion for Use in Early Drug Discovery. Pharm. Res. 2001, 18, 652–
655.
(27) For experimental details describing the determination of the transcel-
lular transport ratio (B-to-A/A-to-B ratio), see: (a) Ohe, T.; Sato, M.;
Tanaka, S.; Fujino, N.; Hata, M.; Shibata, Y.; Kanatani, A.; Fukami,
T.; Yamazaki, M.; Chiba, M.; Ishii, Y. Effect of P-glycoprotein-
mediated Efflux on Cerebrospinal Fluid/Plasma Concentration Ratio.
Drug Metab. Dispos. 2003, 31, 1251–1254.
(28) Liu, X.; Smith, B. J.; Chen, C.; Callegari, E.; Becker, S. L.; Chen,
X.; Cianfrogna, J.; Doran, A. C.; Doran, S. D.; Gibbs, J. P.; Hosea,
N.; Liu, J.; Nelson, F. R.; Szewc, M. A.; Van Deusen, J. Evaluation
of Cerebrospinal Fluid Concentration and Plasma Free Concentration
as a Surrogate Measurement for Brain Free Concentration. Drug
Metab. Dispos. 2006, 34, 1443–1447.
(29) Binding affinities for human Y1, Y2, Y4, and Y5 receptor were
determined as described in Kanatani, A.; Ishihara, A.; Iwassa, H.;
Nakamura, K.; Okamoto, O.; Hidaka, M.; Ito, J.; Fukuroda, T.;
MacNeil, D. J.; Van der Ploeg, L. H. T.; Fukami, T.; Ihara, M.
L-152804: Orally Active and Selective Y5 Receptor Antagonist.
Biochem. Biophys. Res. Commun. 2000, 272, 169–173.
(30) For preparation, see Supporting Information.
(31) Shuman, R. T.; Ornstein, P. L.; Paschal, J. W.; Gesellchen, P. D. An
Improved Synthesis of Homoproline and Derivatives. J. Org. Chem.
1990, 55, 738–741.
JM900110T