2412
M. G. Kulkarni et al. / Tetrahedron Letters 50 (2009) 2411–2413
O
O
O
O
CHO
O
CHO
O
a
b
c
e
f
OH
NO2
NO2
NO2
d
NO2
NO2
4
3
5
6
2
O
O
O
MeNHCO2
l
MeO
O
h
j
N
N
N
g
NH2
R
NH2
N
N
N
R
k
NH2
NO2
11
9 R = H
10 R = Me
8
1
7
i
Reagents and condition: (a) CH2=CHCH2OCH2P+Ph3Cl-, t-BuO-Na+, THF, 0OC; (b) Xylene, reflux; (c) p-TSA, ethylene
glycol, Toluene, reflux; (d) O3, dimethyl sulfide, 00C, DCM; (e) NaBH4, aq. THF; (f) DIAD, PPh3, phthalimide, methylamine,
reflux; (g) Raney nickel, [H2], MeOH; (h) p-TSA, aq. THF, reflux; (i) aq. HCHO, 10% Pd-C, EtOAc, [H 2]; (j) NBS, DMF, 00C;
(k) CuI, NaOMe, reflux; (l) BBr3, CH2Cl2, 00C- rt. NaH, MeNCO.
251–270; (d) Yu, Q.-S.; Luo, W.; Holloway, H. W.; Utsuki, T.; Perry, T.; Lahiri, D.
K.; Greig, N. H.; Brossi, A. Heterocycles 2003, 61, 529–539; (e) Somei, M.;
Yamada, A. F.; Hayashi, T.; Goto, A.; Saga, Y. Heterocycles 2001, 55, 457–460; (f)
Somei, M.; Oshikiri, N.; Hasegawa, M.; Yamada, F. Heterocycles 1999, 51, 1237–
1242; (g) Kawasaki, T.; Ogawa, A.; Terashima, R.; Saheki, T.; Ban, N.; Sekiguchi,
H.; Sakaguchi, K.; Sakamoto, M. J. Org. Chem. 2005, 70, 2957; (h) Depew, K. M.;
Marsden, S. P.; Zatorska, D.; Zatorski, A.; Bornmann, W.; Danishefsky, S. J. J. Am.
Chem. Soc. 1999, 121, 11953; (i) Schiavi, B. M.; Richard, D. J.; Joullie, M. M. J. Org.
Chem. 2002, 67, 620; (j) Kawasaki, T.; Ogawa, A.; Takashima, Y.; Sakamoto, M.
Tetrahedron Lett. 2003, 44, 1591; (k) Bhat, B.; Harrison, D. M. Tetrahedron 1993,
49, 10655; (l) Marales-Rios, M. S.; Rivera-Becerril, E.; Joseph-Nathan, P.
Tetrahedron: Asymmetry 2005, 16, 2493; (m) Takayama, H.; Matsuda, Y.;
Masubuchi, K.; Ishida, A.; Kitajima, M.; Aimi, N. Tetrahedron 2004, 60, 893; (n)
Wijnberg, J. B. P. A.; Speckamp, W. N. Tetrahedron Lett. 1975, 46, 4035–4038; (o)
Menozzi, C.; Dalko, P. I.; Cossy, J. Chem. Commun. 2006, 44, 4638–4640; (p)
Motonori, O.; Thomas, F. S.; Bernhard, W. J. Am. Chem. Soc. 1968, 90, 6521–
6522; (q) Chen, H. J.; Kaiser, E. T. J. Am. Chem. Soc. 1974, 96, 625–626; (r)
Joergen, S. C.; Carsten, C. J. Am. Chem. Soc. 1979, 101, 4012–4013; (s) Dounay, A.
B.; Hatanaka, K.; Kodanko, J. J.; Oestreich, M.; Overman, L. E.; Pfeifer, L. A.;
Weiss, M. M. J. Am. Chem. Soc. 2003, 125, 6261–6271; (t) Ohno, M.; Spande, T.;
Witkop, B. J. Am. Chem. Soc. 1970, 92, 343–348; (u) Fang, C-L.; Horne, S.; Taylor,
N.; Rodrigo, R. J. Am. Chem. Soc. 1994, 116, 9480–9486; (v) Masako, N.; Kensei,
Y.; Tohru, H. J. Am. Chem. Soc. 1975, 97, 6496–6501; (w) Milan, B.; David, C.;
Raghu, S. J. Org. Chem. 1994, 59, 5543–5549; (x) Martha, S. M.-R.; Oscar, R. S.-C.;
Pedro, J.-N. J. Org. Chem. 1999, 64, 1086–1087; (y) Hao, S.; Jun, Y.; Wei, C.; Yong,
Q. Org. Lett. 2006, 8, 6011–6014; (z) Juan, A. G-V.; Teresa, M. G.-L.; Rosario, H.
Org. Lett. 2004, 6, 2641–2644; (aa) Tomomi, K.; Masashi, S.; Mayu, O.; Atsuyo,
O.; Romi, T.; Masanori, S. J. Org. Chem. 2008, 73, 5959–5964; (ab) Martha, S. M.-
R.; Oscar, R. S.-C.; Joel, J. T.-S.; Pedro, J.-N. J. Org. Chem. 2001, 66, 1186–1192;
(ac) Yu, Q.-S.; Pei, X.-F.; Holloway, H. W.; Greig, N. H.; Brossi, A. J. Med. Chem.
1997, 40, 2895–2901; (ad) Tan, G. H.; Zhu, X.; Ganesan, A. Org. Lett. 2003, 5,
1801–1803; (ae) Fritz, H.; Stock, E. Tetrahedron 1970, 26, 5821–5829; (af)
Oscar, R. S.-C.; Maricruz, S.-Z.; Myriam, M.-R.; Luis, E. C.-D.; Martha, S. M.-R.;
Pedro, J.-N. Tetrahedron 2006, 62, 3040–3050; (ag) Miguel, O. M.; Phylecia, D.
Tetrahedron Lett. 1991, 32, 7641–7642; (ah) Cardoso, A. S. P.; Marques, M. M. B.;
Srinivasan, N.; Prabhakar, S.; Lobo, A. M. Tetrahedron 2007, 63, 10211–10225;
(ai) David, M. F.; Richard, C. A. Tetrahedron Lett. 1992, 33, 2103–2106; (aj) Yu, Q.
S.; Pei, X. F.; Holloway, H. W.; Greig, N. H.; Brossi, A. J. Med. Chem. 1997, 40,
2895–2901; (ak) Martha, S. M.-R.; Oscar, R. S.-C.; Pedro, J.-N. Tetrahedron 2002,
58, 1479–1484.
cuprous iodide gave esermethole 11. Finally esermethole was con-
verted to physostigmine 1 by effecting demethylation of 11 with
boron tribromide and treatment of the resulting phenol with
methylisocyanate.10a–g The spectral data of the compound so ob-
tained were identical with the reported data for physostigmine. In
summary, we have described a new and efficient synthesis of phy-
sostigmine. Further, it is possible to extend the present protocol
developed for the synthesis of physostigmine to the synthesis of
other natural products with quaternary carbon at the benzylic posi-
tion. On these lines, the total syntheses of other natural products
such as Physovenine and phenserine are being actively pursued.
Acknowledgments
The authors A.P.D., M.P.S., A.S.B., D.D.G., S.W.C., Y.B.S., V.B.N.,
and D.R.B. thank CSIR, New Delhi and M.P.D. thanks UGC, New Del-
hi, for research fellowships.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. (a) Jobst, J.; Hesse, O. Justus Liebigs Ann. Chem. 1864, 129, 115–118; (b) Stedman,
E.; Barger, G. J. Chem. Soc 1925, 127, 247–258.
2. For a review, see: Hino, T.; Nakagawa, M. Alkaloids 1989, 34, 1–75.
3. For a review, see: Kobayashi, J.; Ishibashi, M. Alkaloids 1992, 41, 52–57.
4. Weber, H. P. Acta Crystallogr., Sect. B 1972, 28, 2945.
5. Gueritte-Voegelein, F.; Sevenet, T.; Pusset, J.; Adeline, M. T.; Gillet, B.; Beloeil, J.
C.; Guenard, D.; Potier, P. J. Nat. Prod. 1992, 55, 923.
9. For racemic synthesis of physostigmine, see: (a) Julian, P. L.; Pikl, J. J. Am. Chem.
Soc. 1935, 57, 563–566; (b) Kozo, S.; Eiki, S.; Hironori, K.; Kou, H.; Keiichiro, F.;
Tetsuji, K. J. Org. Chem. 1986, 51, 3007–3011; (c) Joseph, P. M.; Min-Woo, K.;
Ross, L. J. Org. Chem. 1989, 54, 1784–1785; (d) Richard, S.; Tom, L. J. Org. Chem.
1983, 48, 1554–1555; (e) Rodriguez, J. G.; Temprano, F.; Esteban-calderon, C.;
Martinez-ripoll, M.; Garcia-blanco, S. Tetrahedron 1985, 41, 3559; (f) Albert, P.;
Shinji, N.; Qiu, W. J. Org. Chem. 2005, 70, 8538–8549; (g) Rege, P. D.; Johnson, F.
J. Org. Chem. 2003, 68, 6133–6139; (h) Mukai, C.; Yoshida, T.; Sormachi, M.;
Odani, A. Org. Lett. 2006, 8, 83–86; (i) Daisuke, A.; Tatsunori, Y.; Naoki, M.;
Chisato, M. J. Org. Chem. 2007, 72, 6878–6884; (j) James, H. R.; Shyama, S. Org.
Lett. 2007, 9, 1219–1221; (k) Nakagawa, M.; Kawahara, M. Org. Lett. 2000, 2,
953–955; (l) Kobayashi, Y.; Kamisaki, H.; Yanada, R.; Takemoto, Y. Org. Lett.
2006, 8, 2711–2713; (m) Kobayashi, Y.; Kamisaki, H.; Takeda, H.; Yasui, Y.;
Yanadab, R.; Takemotoa, Y. Tetrahedron 2007, 63, 2978–2989; (n) Paulo, F. S.;
Natarajan, S.; Paulo, S. A.; Ana, M. L.; Sundaresan, P. Tetrahedron 2005, 61,
6. (a) Triggle, D. J.; Mitchell, J. M.; Filler, R. CNS Drug Rev. 1998, 4, 87; (b) Giacobini,
E. Neurochem. Int. 1998, 32, 413; (c) Brufani, M.; Castellano, C.; Marta, M.;
Murroni, F.; Oliverio, A.; Pagella, P. G.; Pavone, F.; Pomponi, M.; Rugarli, P. L.
Curr. Res. Alzheimer Ther.: Cholinesterase Inhib. 1988, 343; (d) Granacher, R. P.;
Baldessarini, R. J. Clin. Neuropharmacol. 1976, 1, 63; (e) Takano, S.; Ogasawara,
K. Yuki Gosei Kagaku Kyokaishi 1982, 40, 1037; (f) Sneader, W. Drug News
Perspect 1999, 12, 433.
7. Yu, Q. S.; Holloway, H. W.; Utsuki, T.; Brossi, A.; Greig, N. H. J. Med. Chem. 1999,
42, 1855–1861.
8. For 3a-substituted pyrrolidinoindolines (other than physostigmine), see: (a)
Kimura, M.; Futamata, M.; Mukai, R.; Tamaru, Y. J. Am. Chem. Soc. 2005, 127,
4592; (b) Marsden, S. P.; Depew, K. M.; Danishefsky, S. J. J. Am. Chem. Soc. 1994,
116, 11143; (c) An-naka, M.; Yasuda, K.; Yamada, M.; Kawai, A.; Takamura, N.;
Sugasawa, S.; Matsuoka, Y.; Iwata, H.; Fukushima, T. Heterocycles 1994, 39,