2406
Y.-Y. Peng et al. / Tetrahedron Letters 50 (2009) 2405–2406
Table 1
were generated as expected with good yields (Table 1, entries
13–18). In this transformation the conditions are extremely mild,
since the reactions are performed using water as the solvent at
room temperature. For the mechanism of this reaction, we rea-
soned that the presence of p-toluenesulfonyl chloride enabled an
in situ activation of 4-hydroxycoumarin. The generated intermedi-
Direct sulfanylation of 4-hydroxycoumarin 1 with thiol 2 in water
OH
SR2
TsCl, Et3N
R1
+
R2 SH
R1
H2O, rt
O
O
O
O
ate enol tosylate in
a,b-conjugated system subsequently reacted
with thiol via 1,4-addition and elimination8 to afford the expected
4-sulfanylcoumarin. We believed the results presented here not
only represented a green process but also provided a facile and no-
vel route for the synthesis of 4-sulfanylcoumarins.
Entry
1
R
R2
Product
Ya (%)
OH
4-MeC6H4 (2a)
3a
76
In conclusion, we have described a green, efficient, and novel
route for the synthesis of 4-sulfanylcoumarins via direct sulfanyla-
tion of 4-hydroxycoumarins with thiols. This transformation is
highly effective which is performed in water at room temperature
under air atmosphere. The efficiency of this method combined
with the operational simplicity of the present green process makes
it potential attractive for library construction.
O
O
1a
2
3
4
5
6
7
8
1a
1a
1a
1a
1a
1a
1a
C6H (2b)
3b
3c
3d
3e
3f
80
83
70
80
65
63
64
4-FC6H5 (2c)
2-ClC6H5 (2d)
4-ClC6H5 (2e)
C6H5CH2 (2f)
CH3CH2CH2(2g)
HOCH2CH2 (2h)
3g
3h
Acknowledgment
OH
Financial support from National Natural Science Foundation of
China (No. 20862009) and the Natural Science Foundation of Jiang-
xi province is gratefully acknowledged.
9
4-MeC6H4 (2a)
3i
3j
71
72
O
O
1b
1c
References and notes
OH
O
1. Murray, R. D. H.; Méndez, J.; Brown, S. A. The Natural Coumarins: Occurrence,
Chemistry, and Biochemistry; Wiley: New York, 1982.
10
4-MeC6H4 (2a)
O
2. For selected examples, see: (a) Zhang, L.; Meng, T.; Fan, R.; Wu, J. J. Org. Chem.
2007, 72, 7279; (b) Wu, J.; Zhang, L.; Gao, K. Eur. J. Org. Chem. 2006, 5260; (c) Wu,
J.; Wang, X. Org. Biomol. Chem. 2006, 4, 1348; (d) Wu, J.; Zhang, L.; Xia, H. G.
Tetrahedron Lett. 2006, 47, 1525; (e) Wu, J.; Zhang, L.; Luo, Y. Tetrahedron Lett.
2006, 47, 6747; (f) Murakami, A.; Gao, G.; Omura, M.; Yano, M.; Ito, C.;
Furukawa, H.; Takahashi, D.; Koshimizu, K.; Ohigashi, H. Bioorg. Med. Chem. Lett.
2000, 10, 59; (g) Maier, W.; Schmidt, J.; Nimtz, M.; Wray, V.; Strack, D.
Phytochemistry 2000, 54, 473; (h) Garcia-Argaez, A. N.; Ramirez Apan, T. O.;
Delgado, H. P.; Velazquez, G.; Martinez-Vazquez, M. Planta Med. 2000, 66, 279;
(i) Zhou, P.; Takaishi, Y.; Duan, H.; Chen, B.; Honda, G.; Itoh, M.; Takeda, Y.;
Kodzhimatov, O. K.; Lee, K. H. Phytochemistry 2000, 53, 689; (j) Khalmuradov, M.
A.; Saidkhodzhaev, A. I. Chem. Nat. Compd. 1999, 35, 364; (k) Kamalam, M.;
Jegadeesan, M. Indian Drugs 1999, 36, 484; (l) Tan, R. X.; Lu, H.; Wolfender, J. L.;
Yu, T. T.; Zheng, W. F.; Yang, L.; Gafner, S.; Hostettmann, K. Planta Med. 1999, 65,
64; (m) Vlietinck, A. J.; Bruyne, T. D.; Apers, S.; Pieters, L. A. Planta Med. 1998, 64,
97; (n) Silvan, A. M.; Abad, M. J.; Bermejo, P.; Villar, A.; Sollhuber, M. J. Nat. Prod.
1996, 59, 1183; (o) Yang, Y. M.; Hyun, J. W.; Sung, M. S.; Chung, H. S.; Kim, B. K.;
Paik, W. H.; Kang, S. S.; Park, J. G. Planta Med. 1996, 62, 353.
11
12
1c
1c
C6H (2b)
4-FC6H5 (2c)
3k
3l
73
76
OH
O
F
13
4-MeC6H4 (2a)
3m
77
O
1d
14
15
1d
1d
C6H (2b)
4-FC6H5 (2c)
3n
3o
75
71
OH
Cl
16
4-MeC6H4 (2a)
3p
76
3. a Wu, J.; Yang, Z.; Fathi, R.; Zhu, Q.; Wang, L. US Patent 6,703,514, 2004.; b Wu,
J.; Yang, Z.; Fathi, R.; Zhu, Q. US Patent 7,148,253, 2006.
O
O
4. For selected examples, see: (a) Majumdar, K. C.; Ghosh, S. K. Tetrahedron Lett.
2002, 43, 2115; (b) Shepard, M. S.; Carreira, E. M. Tetrahedron 1997, 53, 16253;
(c) Shepard, M. S.; Carreira, E. M. J. Am. Chem. Soc. 1997, 119, 2597; (d) Wu, J.
Chem. Lett. 2006, 35, 562; (e) Wang, W. Z.; Ding, Q. P.; Fan, R. H.; Wu, J.
Tetrahedron Lett. 2007, 48, 3647.
17
18
1e
1e
C6H (2b)
4-FC6H5 (2c)
3q
3r
78
80
a
Isolated yields based on 4-hydroxycoumarin.
5. Kang, F.-A.; Sui, Z.; Murray, W. V. J. Am. Chem. Soc. 2008, 130, 11300.
6. Ackermann, L.; Mulzer, M. Org. Lett. 2008, 10, 5043.
7. General procedure for direct sulfanylation of 4-hydroxycoumarins with thiols: A
mixture of 4-hydroxycoumarin 1 (0.2 mmol) and triethylamine (0.6 mmol) in
water (1 ml) was stirred for several minutes. Then, 4-methylbenzenesulfonyl
chloride (0.3 mmol) was added to the mixture. The mixture was stirred at room
temperature for 1–2 h. After completion of the reaction as indicated by TLC,
thiophenol 2 (0.34 mmol) was added to the mixture. The mixture was stirred at
room temperature for 16–30 h. After completion of the reaction as indicated by
TLC, the reaction mixture extracted with EtOAc (3 Â 10 mL), washed with
saturated aqueous NaCl (10 mL), dried (Na2SO4), and filtered. Evaporation of the
solvent followed by purification on silica gel provided the corresponding
product 3. Selected example: 4-(p-tolylthio)coumarin, 76% yield. 1H NMR
(400 MHz, CDCl3) d 2.44 (s, 3H), 5.63 (s, 1H), 7.30–7.35 (m, 4H), 7.46 (d,
J = 8.0 Hz, 2H), 7.57 (s, 1H), 7.85 (dd, J = 1.2, 8.0, Hz, 1H); 13C NMR (100 MHz,
CDCl3) d 21.4, 108.2, 117.1, 117.9, 122.6, 123.7, 124.1, 131.2, 132.2, 136.0, 141.4,
152.3, 158.4, 159.6.
8. (a) Mazal, C.; Jonas, J. Collect. Czech. Chem. Commun. 1993, 58, 1607; (b)
Bernasconi, C. F.; Ketner, R. J.; Chen, X.; Rappoport, Z. J. Am. Chem. Soc. 1998, 120,
7461; (c) Schio, L.; Chatreaux, F.; Loyau, V.; Murer, M.; Ferreira, A.; Mauvais, P.;
Bonnefoy, A.; Klich, M. Bioorg. Med. Chem. Lett. 2001, 11, 1461; (d) Saito, T. J.
Chem. Soc., Perkin Trans. I 1988, 3065; (e) Majumdar, K. C.; Sarkar, S. Synth.
Commun. 2004, 34, 2873; (f) Majumdar, K. C.; Sarkar, S. Tetrahedron Lett. 2002,
43, 2119.
ring of benzenethiol 2 do not effect the reaction markedly. The ali-
phatic thiol (such as benzyl thiol and n-propyl thiol) employed in
the reaction also worked well although the yield was lower (Table
1, entries 6 and 7). It is noteworthy that the hydroxy group in the
thiol is also tolerated under the conditions (Table 1, entry 8). Other
4-hydroxycoumarins were also examined. 4-Hydroxy-6-methyl-
coumarin 1b reacted with 4-methylbenzenethiol 2a leading to
the desired product 3i in 71% yield (Table 1, entry 9). 72% yield
of 4-sulfanylcoumarin 3j was generated when 6,7-dimethyl-4-
hydroxycoumarin 1c was utilized as substrate in the reaction of
4-methylbenzenethiol 2a (Table 1, entry 10). Reaction of 6,7-di-
methyl-4-hydroxycoumarin 1c with benzenethiol 2b or 2c also
proceeded well to give rise to the corresponding product 3k or 3l
in good yields (Table 1, entries 11–12). 6-Fluoro-4-hydroxycouma-
rin 1d and 6-chloro-4-hydroxycoumarin 1e were good substrates
in this kind of transformation, and the corresponding products