Straightforward Stereoselective Access to Cyclic
Peptidomimetics
Santos Fustero,*,†,‡ Natalia Mateu,†,‡ Laia Albert,†,‡ and
Jose´ Luis Acen˜a‡
Departamento de Qu´ımica Orga´nica, UniVersidad de
Valencia, E-46100 Burjassot, Spain, and Laboratorio de
Mole´culas Orga´nicas, Centro de InVestigacio´n Pr´ıncipe
Felipe, E-46012 Valencia, Spain
FIGURE 1. Structure of a ꢀ-turn.
evidence of this hydrogen bond typically serves to verify the
ꢀ-turn pattern.4 A large number of cyclic or bicyclic ꢀ-turn
mimics have been described,5 some of which exhibit biological
activities.6 Among them, Freidinger lactams are the most
emblematic example.7
santos.fustero@uV.es
ReceiVed March 31, 2009
We report herein a new synthetic route for preparing potential
ꢀ-turn mimics. The target compounds would consist of a cyclic
dipeptide framework 1 of varying ring sizes, also containing a
quaternary center that infers an additional element of constraint8
(Scheme 1). This scaffold would be constructed with the aid of
a ring-closing metathesis (RCM) reaction9 from a suitable diene
precursor 2 followed by the stereoselective introduction of a
new amino group within the ring. We used chiral imino lactones
3 as starting materials, which can be easily prepared from the
The preparation of cyclic dipeptide mimetics from chiral
imino lactones derived from (R)-phenylglycinol is described.
Key steps of the synthetic route included the fully stereo-
selective construction of a quaternary center, the formation
of six-, seven-, or eight-membered lactams by means of an
RCM cyclization, and the introduction of a new amino group
within the lactam ring. The synthesis of a tripeptide mimetic
is also reported.
(4) (a) Belvisi, L.; Gennari, C.; Mielgo, A.; Potenza, D.; Scolastico, C. Eur.
J. Org. Chem. 1999, 389–400. (b) Vass, E.; Hollo´si, M.; Besson, F.; Buchet, R.
Chem. ReV. 2003, 103, 1917–1954.
(5) For recent examples, see: (a) San˜udo, M.; Garc´ıa-Valverde, M.; Mar-
caccini, S.; Delgado, J. J.; Rojo, J.; Torroba, T. J. Org. Chem. 2009, 74, 2189–
2192. (b) Li, Y.; Yu, Y.; Giulianotti, M.; Houghten, R. A. J. Org. Chem. 2009,
74, 2183–2185. (c) Scheffelaar, R.; Nijenhuis, R. A. K.; Paravidino, M.; Lutz,
M.; Spek, A. L.; Ehlers, A. W.; de Kanter, F. J. J.; Groen, M. B.; Orru, R. V. A.;
Ruijter, E. J. Org. Chem. 2009, 74, 660–668. (d) Deaudelin, P.; Lubell, W. D.
Org. Lett. 2008, 10, 2841–2844. (e) Angell, Y.; Chen, D.; Saragovi, H. U.;
Burgess, K. J. Am. Chem. Soc. 2008, 130, 556–565. (f) Lomlin, L.; Einsiedel,
J.; Heinemann, F. W.; Meyer, K.; Gmeiner, P. J. Org. Chem. 2008, 73, 3608–
3611. (g) Verdie´, P.; Subra, G.; Averland-Petit, M.-C.; Amblard, M.; Martinez,
J. J. Comb. Chem. 2008, 10, 869–874. (h) Lesma, G.; Colombo, A.; Sacchetti,
A.; Silvani, A. Tetrahedron Lett. 2008, 49, 7423–7425. (i) Palomo, C.; Aizpurua,
J. M.; Balentova´, E.; Jime´nez, A.; Oyarbide, J.; Fratila, R. M.; Miranda, J. I.
Org. Lett. 2007, 9, 101–104. For reviews, see: (j) Souers, A. J.; Ellman, J. A.
Tetrahedron 2001, 57, 7431–7448. (k) MacDonald, M.; Aube´, J. Curr. Org.
Chem. 2001, 5, 417–438. (l) Burgess, K. Acc. Chem. Res. 2001, 34, 826–835.
(m) Pe´rez de Vega, M. J.; Mart´ın-Mart´ınez, M.; Gonza´lez-Mun˜iz, R. Curr. Top.
Med. Chem. 2007, 7, 33–62.
The search for new peptidomimetic structures is a common
approach to obtain drug-like compounds derived from biologi-
cally active peptides.1 One of the most pursued strategies
consists of the preparation of cyclic analogues in order to reduce
the conformational freedom of the parent peptides.2 In this
context, many conformationally constrained mimics of reverse
turns have been designed and synthesized, considering that turns
are ubiquitous structural motifs in peptides and proteins and
are also essential for folding and molecular recognition events.3
Among all types of reverse turns, ꢀ-turns are the most
frequent and extensively studied. They involve four amino acid
residues and are usually stabilized by an intramolecular hydro-
gen bond that forms a 10-membered ring (Figure 1). In fact,
(6) (a) To¨mbo¨ly, C.; Ballet, S.; Feytens, D.; Ko¨ve´r, K. E.; Borics, A.; Lovas,
S.; Al-Khrasani, M.; Fu¨rst, Z.; To´th, G.; Benhye, S.; Tourwe´, D. J. Med. Chem.
2008, 51, 173–177. (b) Vartak, A. P.; Skoblenick, K.; Thomas, N.; Mishra, R. K.;
Johnson, R. L. J. Med. Chem. 2007, 50, 6725–6729. (c) Cai, M.; Cai, C.;
Mayorov, A. V.; Xiong, C.; Cabello, C. M.; Soloshonok, V. A.; Swift, J. R.;
Trivedi, D.; Hruby, V. J. J. Peptide Res. 2004, 63, 116–131. (d) Qiu, W.; Gu,
X.; Soloshonok, V. A.; Carducci, M. D.; Hruby, V. J. Tetrahedron Lett. 2001,
42, 145–148.
(7) (a) Freidinger, R. M.; Veber, D. F.; Perlow, D. S.; Brooks, J. R.;
Saperstein, R. Science 1980, 210, 656–658. (b) Freidinger, R. M. J. Med. Chem.
2003, 46, 5553–5566.
(8) For previous synthetic approaches to molecules related to 1, see:(a)
Westermann, B.; Diedrichs, N.; Krelaus, R.; Walter, A.; Gedrath, I. Tetrahedron
Lett. 2004, 45, 5983–5986. (b) Cordero, F. M.; Pisaneschi, F.; Meschini Batista,
K.; Valenza, S.; Machetti, F.; Brandi, A. J. Org. Chem. 2005, 70, 856–867. (c)
Verbist, B. M. P.; De Borggraeve, W. M.; Toppet, S.; Compernolle, F.; Hoornaert,
G. J. Eur. J. Org. Chem. 2005, 2941–2950.
(9) The use of metathesis reactions in peptidomimetic synthesis has been
recently reviewed; see: (a) Brik, A. AdV. Synth. Catal. 2008, 350, 1661–1675.
For selected examples, see: (b) Fink, B. E.; Kym, P. R.; Katzenellenbogen, J. A.
J. Am. Chem. Soc. 1998, 120, 4334–4344. (c) Hoffmann, T.; Lanig, H.; Waibel,
R.; Gmeiner, P. Angew. Chem., Int. Ed. 2001, 40, 3361–3364. (d) Creighton,
C. J.; Leo, G. C.; Du, Y.; Reitz, A. B. Bioorg. Med. Chem. 2004, 12, 4375–
4385.
† Universidad de Valencia.
‡ Centro de Investigacio´n Pr´ıncipe Felipe.
(1) (a) Adessi, C.; Soto, C. Curr. Med. Chem. 2002, 9, 963–978. (b) Hummel,
G.; Reineke, U.; Reimer, U. Mol. BioSyst. 2006, 2, 499–508. (c) Che, Y.; Brooks,
B. R.; Marshall, G. R. J. Comput. Aided Mol. Des. 2006, 20, 109–130. (d) Vagner,
J.; Qu, H.; Hruby, V. J. Curr. Opin. Chem. Biol. 2008, 12, 292–296.
(2) For reviews, see: (a) Hanessian, S.; McNaughton-Smith, G.; Lombart,
H.-G.; Lubell, W. D. Tetrahedron 1997, 53, 12789–12854. (b) Soloshonok, V. A.
Curr. Org. Chem. 2002, 6, 341–364. (c) Belvisi, L.; Colombo, L.; Manzoni, L.;
Potenza, D.; Scolastico, C. Synlett 2004, 1449–1471. (d) Cluzeau, J.; Lubell,
W. D. Biopolymers 2005, 80, 98–150. (e) Maison, W.; Prenzel, A. H. G. P.
Synthesis 2005, 1031–1048. (f) Hanessian, S.; Auzzas, L. Acc. Chem. Res. 2008,
41, 1241–1251.
(3) Rotondi, K. S.; Gierasch, L. M. Biopolymers 2006, 84, 13–22.
10.1021/jo900679c CCC: $40.75
Published on Web 05/13/2009
2009 American Chemical Society
J. Org. Chem. 2009, 74, 4429–4432 4429