protocol for generating valuable building blocks in polyene
syntheses. The variety of substituents in the phenyl ring, the
possible application to five-membered heteroaromatics, and
the extension to conjugated dienes make this method valuable
in the synthesis of small molecules and natural products.
Preliminary attempts to carry out Diels–Alder chemistry using
the 1,3-dienes as well as 6p electrocyclization of the 1,3,5-
trienes and their biological study in zebrafish embryogenesis
are under way.
The author B. C. D. is thankful to AECOM for start-up
funding.
Scheme 2 One-pot Wittig reaction and acid hydrolyis.
Notes and references
1 R. C. Moon, R. G. Mehta, K. V. N. Rao and M. B. Spron, The
Retinoids: Biology, Chemistry and Medicine, ed. A. B. Robert and
D. S. Goodman, Raven Press, New York, 2nd edn, 1994,
pp. 573–630.
2 P. Loeliger, W. Bollag, H. Mayer and K. Europ, J. Med. Chem.,
1980, 15, 9.
3 M. I. Dawson, P. D. Hobbs, K. Derdzinski, R. L.-S. Chan,
J. Gruber, W. Chao, S. Smith, R. W. Thies and L. J. Schiff,
J. Med. Chem., 1984, 27, 1516.
Scheme 3 One-pot Wittig reaction with 4-formylbenzoic acid.
4 J. Mundi, S. R. Frankel, W. H. Miller, Jr, A. Jakubowski,
D. A. Scheinberg, C. W. Young, E. Dmitrovsky and
R. P. Warrell, Jr, Blood, 1992, 79, 299.
5 A. M. Nadzan, Annu. Rep. Med. Chem., 1995, 30, 119.
6 B. C. Das and G. W. Kabalka, Tetrahedron Lett., 2008, 49, 4695.
7 (a) Z. Rappoport, The Chemistry of Dienes and Polyenes, John
Wiley & Sons, Chichester, 1997, vol. 1; (b) Z. Rappoport, The
Chemistry of Dienes and Polyenes, John Wiley & Sons, Chichester,
2001, vol. 2.
8 (a) R. C. Larock, Comprehensive Organic Transformations,
Wiley-VCH, New York, 2nd edn, 1999, ch. 2; (b) A. A. Vasil’ev
and E. P. Sterebryakov, Russ. Chem. Rev., 2001, 70, 735.
9 (a) A. Suzuki, Acc. Chem. Res., 1982, 15, 178; (b) A. Suzuki, Pure
Appl. Chem., 1985, 57, 1749; (c) A. Suzuki, Pure Appl. Chem., 1991,
63, 419; (d) A. Suzuki, Pure Appl. Chem., 1994, 66, 213;
(e) N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457;
(f) A. Suzuki, in Metal-Catalyzed Cross-Coupling Reactions, ed.
F. Diederich and P. J. Stang, Wiley-VCH, Weinheim, Germany,
1998, p. 49; (g) N. Miyaura, in Advances in Metal-Organic Chem-
istry, ed. L. S. Liebeskind, JAI Press, London, UK, 1998, vol. 6,
p. 187; (h) A. Suzuki, J. Organomet. Chem., 1999, 576, 147;
(i) T. Jun, T. Kou, Tatsuo and M. Norio, J. Am. Chem. Soc.,
2002, 124, 8001; (j) Z. Xiaoxia and C. L. Richard, Org. Lett., 2003,
5, 2993.
10 (a) F. Fringuelli and A. Taticchi, Dienes in the Diels–Alder
Reaction, Wiley, New York, 1990; (b) W. Carruthers, Cycloaddi-
tion Reactions in Organic Synthesis, Pergamon Press, Oxford, UK,
1990; (c) W. Oppolzer, in Comprehensive Organic Synthesis, ed.
B. M. Trost, Pergamon Press, Oxford, UK, 1991, vol. 5, p. 187;
(d) J. D. Winkler, Chem. Rev., 1996, 96, 167; (e) S. Otto and
J. B. F. N. Engberts, Pure Appl. Chem., 2000, 72, 1365;
(f) A. Kumar, Chem. Rev., 2001, 101, 1.
Scheme 4 Proposed reaction mechanism.
shift to provide D, which subsequently reacts with aldehydes
to furnish dienes E. (see ESIw for other mechanisms).
In support of the postulated mechanism, we isolated one of
the intermediates 4. It is interesting to point out that the
olefinic peaks (d 5.50–5.70) in 1H NMR spectrum of
intermediate 4 (Fig. 3, ESIw) provides evidence that the
triphenylphosphine added to the olefinic double bond of A
via a simple allylic type displacement of bromine. To the best
of our knowledge, this is the first Wittig reaction of this type to
be reported in an allylic alcohol system.
In conclusion, we have developed a general and flexible
approach to highly substituted 1,3-dienes and 1,3,5-trienes.
The ready availability of the starting materials and the
simplicity of the reaction conditions make this a very attractive
11 (a) C. M. Beaudry, J. P. Malerich and D. Trauner, Chem. Rev.,
2005, 105, 4757; (b) D. J. Tantillo, Annu. Rep. Prog. Chem., Sect.
B: Org. Chem., 2006, 102, 269.
12 C. L. Benson and F. G. West, Org. Lett., 2007, 9, 2545.
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 2133–2135 | 2135