2388
P. Goswami, B. Das / Tetrahedron Letters 50 (2009) 2384–2388
8. For review of asymmetric Mannich reactions see Verkade, J. M. M.; van Hemert,
In conclusion, we have reported an environmentally green and
L. J. C.; Quaedflieg, P. J. L. M.; Rutjes, F. P. J. T. Chem. Soc. Rev. 2008, 37, 29.
9. (a) Trost, B. M.; Terrell, L. R. J. Am. Chem. Soc. 2003, 125, 338; (b) Matsunaga, S.;
Kumagai, N.; Harada, S.; Shibasaki, M. J. Am. Chem. Soc. 2003, 125, 4712; (c) Juhl,
K.; Gathergood, N.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2001, 40, 2995; (d)
List, B. J. Am. Chem. Soc. 2000, 122, 9336; (e) List, B.; Pojarliev, P.; Biller, W. T.;
Martin, H. J. J. Am. Chem. Soc. 2002, 124, 827; (f) Cordova, A.; Notz, W.; Zhong,
G.; Betancort, J. M.; Barbas, C. F., III J. Am. Chem. Soc. 2002, 124, 1842; (g)
Kobayashi, S.; Hamada, T.; Manabe, K. J. Am. Chem. Soc. 2002, 124, 5640; (h)
Hayashi, Y.; Tsuboi, W.; Ashimine, I.; Urushima, T.; Shoji, M.; Sakai, M. Angew.
Chem., Int. Ed. 2003, 42, 3677; (i) Wenzel, A. G.; Jacobsen, E. N. J. Am. Chem. Soc.
2002, 124, 12964.
10. (a) Hayashi, Y.; Tsuboi, W.; Shoji, M.; Suzuki, N. J. Am. Chem. Soc. 2003, 125,
11208; (b) Hayashi, Y.; Tsuboi, W.; Ashimine, I.; Urushima, T.; Shoji, M.; Sakai,
K. Angew. Chem., Int. Ed. 2003, 42, 3677; (c) Hayashi, Y.; Urushima, T.; Shoji, M.;
Uchimaru, T.; Shiina, I. Adv. Synth. Catal. 2005, 347, 1595; (d) Hayashi, Y.;
Urushima, T.; Shin, M.; Shoji, M. Tetrahedron 2005, 61, 11393; (e) Hayashi, Y.;
Urushima, T.; Tsuboi, W.; Shoji, M. Nat. Protocols 2007, 2, 113.
11. For direct enantioselective Mannich reactions, see: (a) Trost, B. M.;
Jaratjaroonphong, J.; Reutrakul, V. J. Am. Chem. Soc. 2006, 128, 2778; (b)
Song, J.; Wang, Y.; Deng, L. J. Am. Chem. Soc. 2006, 128, 6048; (c) Shibasaki, M.;
Matsunaga, S. J. Organomet. Chem. 2006, 691, 2089; (d) Cordova, A. Acc. Chem.
Res. 2004, 37, 102.
12. (a) Cordova, A.; Barbas, C. F., III Tetrahedron Lett. 2003, 44, 1923; (b) Notz, W.;
Tanaka, F.; Watanabe, S.; Chawdari, N. S.; Turner, J. M.; Thayumanavan, R.;
Barbas, C. F., III J. Org. Chem. 2003, 68, 9624; (c) Azizi, N.; Torkiyan, L.; Saidi, M.
R. Org. Lett. 2006, 8, 2079; (d) Shimizu, S.; Shimada, N.; Sasaki, Y. Green Chem.
2006, 8, 608.
benign protocol for the synthesis of diastereoselective Mannich
products using adenine as the aminocatalyst. The lack of column
chromatography for majority of the compounds partially over-
comes the major problem of epimerisation of the Mannich prod-
ucts,15 faced during their purification through column
chromatography. Additionally, the non-requirement of work-up
procedure with organic solvents provides a greener edge to our
protocol. In a nutshell, our modus operandi should find a signifi-
cant place in the sphere of green synthetic organic chemistry.
Acknowledgements
The work was carried out with the financial Grant No. SR/FTP/
CS-15/2007 of DST, New Delhi, India. The authors are grateful to
the Director, IIT Guwahati for providing general facilities for this
work. The reviewers are duly acknowledged for their valuable
suggestions.
References and notes
13. Experimental procedure: To a mixture of aldehyde (1 mmol), cyclohexanone
(1 mmol) and amine (1 mmol) in ethanol–water 4:1 was added catalyst (20–
1. (a) List, B. Chem. Commun. 2006, 819; (b) Melchiorre, P.; Marigo, M.; Carlone, A.;
Bartoli, G. Angew. Chem., Int. Ed. 2008, 47, 6138.
40 mol %) followed by 40
lL of 30% H2O2. The reaction mixture was allowed to
2. Hupe, D. J.. In New Comprehensive Biochemistry; Page, M. I., Ed.; Elsevier:
Amsterdam, 1984; Vol. 6, pp 271–301.
stir at room temperature until the completion of the reaction as indicated by
thin layer chromatography (TLC). On completion, the reaction mixture was
poured in water upon which the product precipitates out. The product was
separated out by filtration and washed with water. The crude product was
recrystallised from chloroform and directly analysed for certain compounds
without further purification. Some compounds required purification by column
chromatography (hexane–ethyl acetate 9:1) and were later analysed.
3. (a) Pizzarello, S.; Weber, A. L. Science 2004, 303, 1151; (b) Tanaka, F.;
Thayumanavan, R.; Mase, N.; Barbas, C. F., III Tetrahedron Lett. 2004, 45, 325;
(c) Cordova, A.; Ibrahem, I.; Casas, J.; Sunden, H.; Engqvist, M.; Reyes, E. Chem.
Eur. J. 2005, 11, 4772; (d) Amedjkouh, M. Tetrahedron: Asymmetry 2005, 16,
1411; (e) Cordova, A.; Zou, W.; Ibrahem, I.; Reyes, E.; Engqvist, M.; Liao, W.-W.
Chem. Commun. 2005, 3586; (f) Zou, W.; Ibrahem, I.; Dziedzic, P.; Sunden, H.;
Cordova, A. Chem. Commun. 2005, 4946; (g) Ibrahem, I.; Zou, W.; Engqvist, M.;
Xu, Y.; Cordova, A. Chem. Eur. J. 2005, 11, 7024; (h) Bassan, A.; Zou, W.; Reyes,
E.; Himo, F.; Cordova, A. Angew. Chem., Int. Ed. 2005, 44, 7028; (i) Xu, Y.;
Cordova, A. Chem. Commun. 2006, 460; (j) Xu, Y.; Zou, W.; Sunden, H.; Ibrahem,
I.; Cordova, A. Adv. Synth. Catal. 2006, 348, 418.
4. (a) Witkop, B. J. Am. Chem. Soc. 1956, 78, 2873; (b) Pfau, M.; RibiKre, C. J. Chem.
Soc. D 1970, 66; (c) Clark, R. A.; Parker, D. C. J. Am. Chem. Soc. 1971, 93, 7257; (d)
De Jeso, B.; Pommier, J.-C. J. Chem. Soc., Chem. Commun. 1977, 565; (e) Boyd, D.
R.; Jennings, W. B.; Waring, L. C. J. Org. Chem. 1986, 51, 992; (f) Capon, B.; Wu,
Z.-P. J. Org. Chem. 1990, 55, 2317.
5. (a) Kobayashi, S.; Ishitani, H. Chem. Rev. 1999, 99, 1069; (b) Denmark, S. E.;
Nicaise, O. J.-C. In Comprehensive Asymmetric Catalysis; Jacobsen, E. N., Ed.;
Springer: Berlin, 1999; p 923; (c) Arend, M.; Westermann, B.; Risch, N. Angew.
Chem., Int. Ed. 1998, 37, 1044; (d)Enantioselective Synthesis of R-Amino Acids;
Juaristi, E., Ed.; VCH: Weinheim, Germany, 1997; (e) Kleinman, E. F.. In
Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon Press: Oxford,
1991; Vol. 2, p 893. Chapter 2.3; (f) Marques, M. M. B. Angew. Chem., Int. Ed.
2006, 45, 348.
Compound 4a: Dirty white solid; 1H NMR (400 MHz, CDCl3,
A (syn)/B
(anti)) = 17/83): d 1.51–1.66 (m, 4H), 1.68–1.73 (m, 1H), 1.81–1.91 (m, 1H),
2.01–2.04 (m, 1H), 2.29–2.43 (m, 1H), 2.72–2.79 (m, 1H), 4.61 (d, 0.83H,
J = 6.8 Hz for B), 4.79 (d, 0.17H, J = 4.0 Hz for A), 6.52 (t, 2H, J = 8.4 Hz), 6.60–
6.64 (m, 1H), 7.03–7.08 (m, 2H), 7.19 (t, 2H, J = 7.6), 7.27–7.31 (m, 2H), 7.35 (t,
2H, J = 8.0 Hz); 13C NMR (100 MHz, CDCl3, A/B = 17/83): d for A 25.09, 27.29,
28.90, 42.67, 56.89, 57.45, 114.34, 117.82, 127.29, 127.45, 128.79, 129.36,
142.24, 147.53, 212.47; for B 23.89, 28.19, 31.56, 42.03, 57.75, 58.19, 113.88,
117.76, 127.55, 127.79, 128.75, 129.35, 142.00, 147.53, 213.26. Anal. Calcd for
C19H21NO: C, 81.68; H, 7.58; N, 5.01. Found: C, 81.51; H, 7.61, N, 5.21.
Compound 4b: 1H NMR (400 MHz, CDCl3, A (syn)/B (anti)) = 71/29): d 1.65–1.69
(m, 4H), 1.84–1.93 (m, 1H), 1.98–2.23 (m, 1H), 2.28–2.35 (m, 1H), 2.38–2.42
(m, 1H), 2.63–2.77 (m, 1H), 4.53 (d, 0.29H, J = 6.8 Hz for B), 4.72 (d, 0.71H,
J = 4.4 Hz for A), 6.39 (t, 2H, J = 5.6 Hz), 7.11 (d, 1H, J = 8.0 Hz), 7.12 (d, 1H,
J = 8.0 Hz), 7.19 (t, 1H, J = 6.0 Hz), 7.27–7.32 (m, 4H); 13C NMR (100 MHz,
CDCl3, A/B = 71/29) for A: d 23.95, 28.06, 31.65, 42.07, 57.45, 58.29, 109.25,
115.39, 127.32, 127.57, 128.59, 131.81, 141.07, 146.45, 211.42; for B 24.94,
27.03, 28.61, 42.48, 56.49, 58.31, 109.45, 115.80, 127.45, 128.59, 131.81,
141.31, 146.65, 212.87. Anal. Calcd for C19H20BrNO: C, 63.70; H, 5.63; N, 3.91.
Found: C, 63.89; H, 5.75, N, 3.83.
6. (a) Muller, R.; Goesmann, H.; Waldmann, H. Angew. Chem., Int. Ed. 1999, 38,
184; (b) Bohme, H.; Haake, M. In Advances in Organic Chemistry; Taylor, E. C.,
Ed.; John Wiley and Sons: New York, 1976; p 107.
14. Lalonde, M. P.; Chen, Y.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 6366.
15. Notz, W.; Tanaka, F.; Barbas, C. F., III Acc. Chem. Res. 2004, 37, 580.
7. Holy, N.; Fowler, R.; Burnett, E.; Lorenz, R. Tetrahedron 1979, 35, 613.