C O M M U N I C A T I O N S
entries 10 and 11 is noteworthy since most reported examples of
piperidine ring formation via hydroamination have been reported
for terminal alkenes. Overall, this hydroamination procedure is
experimentally simple and compatible with various solvents,9 the
cyclization precursors are typically bench-stable crystalline solids,
and the products can be purified by chromatography.
Both primary and secondary semicarbazides react under similar
reaction conditions (entries 1-4). Alkene substitution at the distal
position is also tolerated, and the reaction is a stereospecific11 syn
addition process (entries 5 and 6 vs 7). This reactivity appears
consistent with in situ formation of an aminoisocyanate intermediate
upon thermolysis above 150 °C,12 followed by cycloaddition.13
In summary, we have shown that efficient intramolecular
hydroamination and aminocarbonylation can be performed simply
upon heating the appropriate hydrazine derivatives. Several exten-
sions of this work are currently under investigation and will be
reported in due course.
DFT studies were performed to gain more insight into this
hydroamination (HA) reactivity and support the pathway shown in
eq 1. Calculated activation energies for a concerted, planar, five-
membered Cope-type HA transition state (∆GHA‡) were determined
to be 28.7 and 34.2 kcal/mol for substrates 4a and 4f, respectively.
For comparison, calculated values for the parent hydroxylamines
are 22.9 and 27.2 kcal/mol. Our calculations also support the
involvement of the carbonyl group of the hydrazide in the proton
transfer step of the dipole intermediate formed by hydroamination
(∆GPT‡ ) 5.2 kcal/mol),9,10 which is consistent with the reaction’s
compatibility with various solvents. The transition state structures
for the hydroamination (A) and proton transfer (B) processes of
substrate 4a are shown in Figure 1. Overall, these results are in
agreement with the higher temperatures required for the cyclization
of hydrazides, which are typically 80-100 °C above that of the
parent hydroxylamines.
Acknowledgment. We thank the University of Ottawa, CFI,
MRI (Ontario), NSERC, the Enantioselective Synthesis Grant
(sponsored by the Canadian Society for Chemistry, AstraZeneca
Canada, Boehringer Ingelheim (Canada) Ltd. and Merck Frosst
Canada) for partial support of this work. We also thank Prof. Louis
Barriault for an insightful discussion.
Supporting Information Available: Experimental procedures,
solvent scan, computational details and spectroscopic characterization
for all new products. This material is available free of charge via the
Table 3. Scope of Intramolecular Aminocarbonylation Reactivitya
References
(1) Duggers, R. W.; Ragan, J. A.; Brown Ripin, D. H. Org. Process Res. DeV.
2005, 9, 253. (b) Carey, J. S.; Laffan, D.; Thomson, C.; Williams, M. T.
Org. Biomol. Chem. 2006, 4, 2337.
(2) For selected reviews, see: (a) Mu¨ller, T. E.; Hultzsch, K. C.; Yus, M.;
Foubelo, F.; Tada, M. Chem. ReV. 2008, 108, 3795. and reviews cited
therein. (b) Aillaud, I.; Collin, J.; Hannedouche, J.; Schulz, E. Dalton Trans.
2007, 5105. (c) Hultzsch, K. C. AdV. Synth. Catal. 2005, 347, 367. (d)
Nobis, M.; Drieꢀen-Ho¨lscher, B. Angew. Chem., Int. Ed. 2001, 40, 3983.
(e) Mu¨ller, T. E.; Beller, M. Chem. ReV. 1998, 98, 675.
b
entry
alkenyl hydrazide
X
product
yield
%
1
2
3
4
5
6
R1)R2)R3)R4)H
Ot-Bu
NH2
Ot-Bu
NH2
Ot-Bu
NH2
7a
7a
7c
7c
7e
7e
70
(3) For examples of metal-catalyzed hydrohydrazidations, see: (a) Waser, J.;
Carreira, E. M. J. Am. Chem. Soc. 2004, 126, 5676. (b) Waser, J.; Carreira,
E. M. Angew. Chem., Int. Ed. 2004, 43, 4099. (c) Waser, J.; Gaspar, B.;
Nambu, H.; Carreira, E. M. J. Am. Chem. Soc. 2006, 128, 11693. (d) Alex,
K.; Tillack, A.; Schwarz, N.; Beller, M. Angew. Chem., Int. Ed. 2008, 47,
2304, and references cited therein. (e) Li, Y.; Shi, Y.; Odom, A. L. J. Am.
Chem. Soc. 2004, 126, 1794. (f) Cao, C.; Shi, Y.; Odom, A. L. Org. Lett.
2002, 4, 2853.
(4) (a) Beauchemin, A. M.; Moran, J.; Lebrun, M.-E.; Se´guin, C.; Dimitrijevic,
E.; Zhang, L.; Gorelsky, S. I. Angew. Chem., Int. Ed. 2008, 47, 1410. (b)
Moran, J.; Gorelsky, S. I.; Dimitrijevic, E.; Lebrun, M.-E.; Be´dard, A.-C.;
Se´guin, C.; Beauchemin, A. M. J. Am. Chem. Soc. 2008, 130, 17893. (c)
Bourgeois, J.; Dion, I.; Cebrowski, P. H.; Loiseau, F.; Be´dard, A.-C.;
Beauchemin, A. M. J. Am. Chem. Soc. 2009, 131, 874. (d) Moran, J.;
Pfeiffer, J. Y.; Gorelsky, S. I.; Beauchemin, A. M. Org. Lett. 2009, 11,
1895.
”
86
R1)Me, R2)R3)R4)H
74c
84c
66
”
R1)R2)H, R3)Me, R4)H
”
52d
(+13% 7g)
7
R1)R2)R3)H, R4)Me
Ot-Bu
7g
71
a Heating performed in MeCN (200 °C, 30 min, 0.05 M, microwave
reactor). b Isolated yield. c 2:1 dr. d NMR yield using an internal
standard.
(5) Such reactions are also called reverse Cope cyclizations/eliminations. For
a review, see: Cooper, N. J.; Knight, D. W. Tetrahedron 2004, 60, 243.
(6) For analogous intermolecular reactivity of hydrazines with alkynes, see:
Cebrowski, P. H.; Roveda, J.-G.; Moran, J.; Gorelsky, S. I.; Beauchemin,
A. M. Chem. Commun. 2008, 492.
(7) For a recent review on methods to access di- and trisubstituted hydrazides,
see: Licandro, E.; Perdicchia, D. Eur. J. Org. Chem. 2004, 665.
(8) For metal-catalyzed variants, see: (a) Hegedus, L. S.; Allen, G. F.; Olsen,
D. J. J. Am. Chem. Soc. 1980, 102, 3583. (b) Hegedus, L. S.; McKearin,
J. M. J. Am. Chem. Soc. 1982, 104, 2444. (c) Beccalli, E. D.; Broggini,
G.; Martinelli, M.; Sottocornola, S. Chem. ReV. 2007, 107, 5318. (d) Cernak,
T. A.; Lambert, T. H. J. Am. Chem. Soc. 2009, 131, 3124.
(9) The reaction can also be performed in PhMe, dioxane, MeCN, i-PrOH,
DMF, and H2O. See Supporting Information for details.
(10) For hydroxylamines, the proton transfer step of the N-oxide intermediate
is kinetically relevant, and the increased reactivity observed in protic
solvents (e.g., n-PrOH) is consistent with a bimolecular proton transfer
process (e.g., n-PrOH-mediated). See refs 4a,b.
Figure 1. Transition state structures for the intramolecular hydro-
hydrazidation (A) and subsequent proton transfer of the dipolar intermediate
(B) for substrate 4a. The internuclear distances (Å) are shown only for
relevant chemical bonds.
(11) Formation of product 7g in entry 6 is consistent with epimerization of
product 7e. See Supporting Information for details.
(12) For precedence on aminoisocyanates formation from similar precursors,
see: Wadsworth, W. S.; Emmons, W. D. J. Org. Chem. 1967, 32, 1279.
(13) Reports on the reactivity of aminoisocyanates are scarce, and such species
are known to dimerize and trimerize. For other reactivity, see: (a) Lockley,
W. J. S.; Lwowski, W. Tetrahedron Lett. 1974, 4263. (b) Kurz, M.; Reichen,
W. Tetrahedron Lett. 1978, 1433. (c) Reference 12 (and references cited
therein).
In contrast to benzoic hydrazides, carbazates (X ) Ot-Bu) and
semicarbazides (X ) NH2) form aminocarbonylation products at
elevated temperatures (Table 3). A preliminary substrate scope
suggests that semicarbazides are superior precursors (entries 1-6).
JA902558J
9
J. AM. CHEM. SOC. VOL. 131, NO. 25, 2009 8741