Y. He et al. / Tetrahedron Letters 50 (2009) 2317–2319
2319
with this article can be found, in the online version, at doi:10.1016/
O
O
O
a
MeO
BOMO
b
O
MeO
9
HO
O
O
References and notes
16
6
1. (a) Mdluli, K.; Ma, Z. Infect. Disord. Drug Targets 2007, 7, 159; (b) Maxwell, A.
Trends Microbiol. 1997, 5, 102; (c) Tsai, F. T.; Singh, O. M.; Skarzynski, T.;
Wonacott, A. J.; Weston, S.; Tucker, A.; Pauptit, R. A.; Breeze, A. L.; Poyser, J. P.;
O’Brien, R.; Ladbury, J. E.; Wigley, D. B. Proteins 1997, 28, 41; (d) Maxwell, A.
Mol. Microbiol. 1993, 9, 681; (e) Reece, R. J.; Maxwell, A. CRC Crit. Rev. Biochem.
Mol. Biol. 1991, 26, 335; (f) Rádl, S. Pharmacol. Ther. 1990, 48, 1; (g) Gellert, M.;
O’Dea, M. H.; Itoh, T.; Tomizawa, J. I. Proc. Natl. Acad. Sci. U.S.A 1976, 73, 4474.
2. (a) Donnelly, A.; Blagg, B. S. J. Curr. Med. Chem. 2008, 15, 2702; (b) Burlison, J. A.;
Neckers, L.; Smith, A. B.; Maxwell, A.; Blagg, B. S. J. . J. Am. Chem. Soc. 2006, 128,
15529; (c) Allan, RK.; Mok, D.; Ward, BK.; Ratajczak, T. J. Biol. Chem. 2006, 281,
7161; (d) Yu, X. M.; Shen, G.; Neckers, L.; Blake, H.; Holzbeierlein, J.; Cronk, B.;
Blagg, B. S. J. J. Am. Chem. Soc. 2005, 127, 12778; (e) Yun, B.-G.; Huang, W.;
Leach, N.; hartson, S. D.; Matts, R. L. Biochemistry 2004, 43, 8217; (f) Marcu, M.
G.; Schulte, T. W.; Neckers, L. J. Natl. Cancer Inst. 2000, 92, 242; (g) Prodromou,
C.; Roe, S. M.; O’Brien, R.; Ladbury, J. E.; Piper, P. W.; Pearl, L. H. Cell 1997, 90, 65.
3. Kiss, J.; Spiegelberg, H. Helv. Chim. Acta 1964, 47, 398.
4. Achmatowicz, O., Jr.; Grynkiewicz, G.; Szechner, B. Tetrahedron 1976, 32,
1051.
5. Pankau, W. M.; kreiser, W. Helv. Chim. Acta 1998, 81, 1997.
6. Laurin, P.; Ferroud, D.; Klich, M.; Dupuis-Hamelin, C.; Mauvais, P.; Lassaigne, P.;
Bonnefoy, A.; Musicki, B. Bio. Med. Chem. Lett. 1999, 9, 2079.
7. Takeuchi, M.; Taniguchi, T.; Ogasawara, K. Tetrahedron Lett. 2000, 41, 2609.
8. Jeselnik, M.; leban, I.; Polanc, S.; Kocevar, M. Org. Lett. 2003, 5, 2651.
9. Reddy, D. S.; Srinivas, G.; Rajesh, B. M.; Kannan, M.; Rajale, TV.; Iqbal, J.
Tetrahedron Lett. 2006, 47, 6373.
Scheme 4. Reagents and conditions: (a) 2,2-Dimethoxy-propane, PTS, acetone, rt,
86%; (b) 1 atm H2, 10% Pd–C, THF, rt, 77% (95% based on recovered 16).
amount of PTS to give 16. After removal of the BOM group by
hydrogenolysis, target molecule 6 was isolated as colorless oil
(Scheme 4). Although Olson et al. did not provide any structural
data for 6 in their published paper, 1H NMR data gained from our
sample of 6 fit well to the required relative stereochemistry, and
the use of L-arabinose as source of all chiral centers in the molecule
of 6 leaves little doubt to the absolute configuration.15
In conclusion, we proposed that furanone 8, resulted from
acidic hydrolysis of known compound 7, is a practically useful
intermediate leading to 2- or 3-OH selectively protected noviose
derivatives, and therefore provides an effective solution to the
problem of regio-selective functional modification toward noviose.
The effectiveness of this proposal was well illustrated by the prep-
aration of previously unknown 3-O-BOM-Noviose 9 (40% yield, se-
ven steps from 8). By efficient conversion of 9 into noviose 1,2-
acetonide 6 (66%, two steps; 81% based on recovered intermedi-
ate), we were also able to accomplish the first de novo synthesis
of this synthetically versatile noviose derivative.
10. Gammon, D. W.; Hunter, R.; Wilson, S. Tetrahedron Lett. 2002, 43, 3141.
11. Yu, X. M.; Shen, G.; Blagg, B. S. J. J. Org. Chem. 2004, 69, 7375.
12. Vaterlaus, B. P.; Spiegelberg, H. Helv. Chim. Acta 1964, 47, 508.
13. Hanessian, S.; Auzzas, L. Org. Lett. 2008, 10, 261.
14. Olson, S. H.; Slossberg, L. H. Tetrahedron Lett. 2003, 44, 61.
15. A small sample of (+)-noviose was isolated as by-product from the reaction of
the hydrogenolysis step. Optical rotation of this sample is identical with that of
(+)-noviose prepared by repeating Laurin’s whole procedure in our laboratory,
Acknowledgments
and fits well to the previously reported data: ½a D20
ꢂ
+32.2 (c 1.0, EtOH/H2O 1:1);
This project was financially supported by Natural Science Foun-
dation of China (Approval No. 30772634) and Institute of Materia
Medica, Chinese Academy of Medical Sciences and Peking Union
Medical College, Basic Research Award (Approval No. 2006YJ02).
{lit.13 a 2D0
½ ꢂ +33.6/+27.4 (c 0.2, EtOH/H2O 1:1)}; NMR data were consistent with
those previous reported13 1H NMR (CD3OD, 600 MHz), mixture of anomers
:
8:5, d4.94 (d, J = 3.6 Hz, 1H, minor, H-1), 4.80 (d, J = 1.2 Hz, 1H, major, H-1),
3.93 (dd, J = 8.4 Hz, 3.6 Hz, 1H, minor, H-3), 3.71 (dd, J = 3.6 Hz, 1.2 Hz, 1H,
major, H-2), 3.64 (app.t, J = 3.6 Hz, 1H, minor, H-2), 3.60 (dd, J = 9.9 Hz, 3.6 Hz,
1H, major, H-3), 3.50 (s, 3H, major, OMe), 3.47 (s, 3H, minor, OMe), 3.15 (d,
J = 8.4 Hz, 1H, minor, H-4), 3.11 (d, J = 9.9 Hz, 1H, major, H-4), 1.25 (s, 3H,
minor, Me), 1.22 (s, 3H, major, Me), 1.21 (s, 3H, minor, Me), 1.08 (s, 3H, major,
Me); 13C NMR (CD3OD, 125 MHz) d95.6, 90.9, 85.8, 85.2, 78.1, 75.7, 73.8, 73.3,
72.5, 69.7, 62.1, 61.5, 29.0, 28.5, 25.1, 18.6; HRMS (ESI+) C8H16O5 calcd for
[M+Na]+ 215.0895, found 215.0895.
Supplementary data
Experimental details for the synthesis and characterization data
for key intermediates are provided. Supplementary data associated