1726
Y. Nagata, Y. Chujo / Journal of Organometallic Chemistry 694 (2009) 1723–1726
[4] S. Ando, J.-I. Nishida, H. Tada, Y. Inoue, S. Tokito, Y. Yamashita, J. Am. Chem. Soc.
3.2. Materials
127 (2005) 5336–5337.
[5] S. Ando, R. Murakami, J. Nishida, H. Tada, Y. Inoue, S. Tokito, Y. Yamashita, J.
Am. Chem. Soc. 127 (2005) 14996–14997.
[6] H.E. Katz, A.J. Lovinger, J. Johnson, C. Kloc, T. Siegrist, W. Li, Y.-Y. Lin, A.
Dodabalapur, Nature 404 (2000) 478–481.
[7] J. Lu, Z.Z. Fang, H.Y. Sohn, J. Appl. Phys. 95 (2004) 6396–6405.
[8] Z. Chen, M.G. Debije, T. Debaerdemaeker, P. Osswald, F. WLrthner,
ChemPhysChem 5 (2004) 137–140.
[9] B.A. Jones, M.J. Ahrens, M.-H. Yoon, A. Facchetti, T.J. Marks, M.R. Wasielewski,
Angew. Chem., Int. Ed. 43 (2004) 6363–6366.
Tetrahydrofuran (THF) was purified using a two-column solid
state purification system (Glasscontour System, Joerg Meyer,
Irvine, CA). Tripylborane 1 was prepared according to the literature
[25]. 1-Ethynylpyrene was commercially available from Aldrich
and purified by SiO2 column chromatography. All other reagents
were commercially available and used as received.
[10] S. Leroy-Lhez, F. Eur. Fages, J. Org. Chem. 13 (2005) 2684.
[11] H. Zhang, Y. Wang, K. Shao, Y. Liu, S. Chen, W. Qiu, X. Sun, T. Qi, Y. Ma, G. Yu, Z.
Su, D. Zhu, Chem. Commun. (2006) 755.
[12] N. Matsumi, K. Naka, Y. Chujo, J. Am. Chem. Soc. 120 (1998) 5112.
[13] N. Matsumi, M. Miyata, Y. Chujo, Macromolecules 32 (1999) 4467.
[14] N. Matsumi, T. Umeyama, Y. Chujo, Macromolecules 33 (2000) 3956.
[15] H. Kobayashi, N. Sato, Y. Ichikawa, M. Miyata, Y. Chujo, T. Matsuyama, Synth.
Met. 135–136 (2003) 393–394.
3.2.1. Bis((E)-2-pyren-1-yl-vinyl)-2,4,6-triisopropylphenylborane (3)
Tripylborane 1 (108 mg, 0.50 mmol) in THF (1 ml) was slowly
added to 1-ethynylpyrene (226 mg, 1.00 mmol) in THF (4 ml). After
stirring the mixture for 24 h at room temperature, the solvent was
evaporated and the crude product was purified by recrystallization
from hexane. After the emerged crystals were dried under reduced
pressure, the model compound 4 (83 mg, yield 25%) was obtained
as an orange solid. m.p. 245 °C. 1H NMR (CDCl3, d, ppm): 8.61 (2H,
d, J = 17.54 Hz, –CH@CH–B–), 8.55 (2H, d, J = 8.04 Hz), 8.36 (2H, d,
J = 9.50 Hz), 8.22–8.16 (6H, m), 8.12–8.04 (6H, m), 8.00 (2H, t,
J = 7.55 Hz, pyrene-7H), 7.80 (2H, d, J = 17.54 Hz, –CH@CH–B–),
7.17 (2H, s, tripyl-H), 3.12–3.01 (1H, m, –CH–(CH3)2 on 4-position
of tripyl), 2.87–2.77 (2H, m, –CH–(CH3)2 on 2 and 6-position of tri-
pyl), 1.43 (6H, d, J = 7.07 Hz, –CH–(CH3)2 on 4-position of tripyl),
1.28 (12H, d, J = 6.58 Hz, –CH–(CH3)2 on 2 and 6-position of tripyl).
13C NMR (CDCl3, d ppm): 150.73, 149.75, 148.18, 139.90, 138.07,
132.21, 132.07, 131.40, 130.77, 129.41, 128.14, 127.45, 126.09,
125.70, 125.46, 125.11, 124.98, 124.82, 124.54, 122.69, 120.05,
35.31, 34.40, 24.60, 24.28. 11B NMR (CDCl3, d, ppm): 63.67. Anal.
Calc. for C51H45B: C, 91.60; H, 6.78; B, 1.62. Found: C, 91.35; H,
6.88%.
[16] N. Sato, H. Ogawa, F. Matsumoto, Y. Chujo, T. Matsuyama, Synth. Met. 154
(2005) 113–116.
[17] F.M. Winnik, Chem. Rev. 93 (1993) 587.
[18] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox,
H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E.
Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y.
Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S.
Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K.
Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J.
Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L.
Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M.
Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A.
Pople, GAUSSIAN 03, Revision E.01, Gaussian, Inc., Wallingford, CT, 2004.
[19] R. Dennington II, T. Keith, J. Millam, K. Eppinnett, W.L. Hovell, R. Gilliland,
GAUSSVIEW, Version 3.09, Semichem, Inc., Shawnee Mission, KS, 2003.
[20] T. Higashi, ABSCOR, Program for Absorption Correction, Rigaku Corporation,
Japan, 1995.
[21] G.M. Sheldrick, SHELX-97, Programs for Crystal Structure Analysis, University of
Göttingen, Germany, 1997.
References
[22] A. Altomare, M.C. Burla, M. Camalli, G.L. Cascarano, C. Giacovazzo, A.
Guagliardi, A.G.G. Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr. 32
(1999) 115.
[1] Y. Sakamoto, T. Suzuki, M. Kobayashi, Y. Gao, Y. Fukai, Y. Inoue, F. Sato, S.
Tokito, J. Am. Chem. Soc 126 (2004) 8138–8140.
[23] K. Wakita, YADOKARI-XG, Program for Crystal Structure Analysis, 2000.
[24] L.J. Farrugia, J. Appl. Crystallogr. 30 (1997) 565.
[25] A. Pelterand, K. Smith, D. Buss, Z. Jin, Heteroatom Chem. 3 (1992) 275.
[2] A. Facchetti, Y. Deng, A. Wang, Y. Koide, H. Sirringhaus, T.J. Marks, R.H. Friend,
Angew. Chem., Int. Ed. Engl. 39 (2000) 4547–4551.
[3] M.-H. Yoon, S. DiBenedetto, A. Facchetti, T. Marks, J. Am. Chem. Soc. 127 (2005)
1348–1349.