M.Z. Kassaee et al. / Applied Catalysis A: General 395 (2011) 28–33
33
4. Conclusion
[16] C.C. Berry, S. Wells, S. Charles, A.S.G. Curtis, Biomaterials 24 (2003) 4551–
4557.
[17] M.A. Morales, P.V. Finotelli, J.A.H. Coaquira, M.H.M. Rocha-Lea˜o, C. Diaz-Aguila,
E.M. Baggio-Saitovitch, Mater. Sci. Eng. C 28 (2007) 253–257.
[18] H. Cao, J. He, L. Deng, X. Gao, Appl. Surf. Sci. 255 (2009) 7974–7980.
[19] K.C. Barick, M. Aslam, P.V. Prasad, V.P. Dravid, D. Bahadur, J. Magn. Magn. Mater.
321 (2009) 1529–1532.
[20] K. Can, M. Ozmen, M. Ersoz, Colloid Surf. B 71 (2009) 154–159.
[21] A. Corma, H. Garcia, Adv. Synth. Catal. 348 (2006) 1391–1412.
[22] B.M. Reddy, B. Thirupathi, M.K. Patil, J. Mol. Catal. A: Chem. 307 (2009) 154–159.
[23] A.K. Bhattacharya, K.C. Rana, Tetrahedron Lett. 49 (2008) 2598–2601.
[24] S.D. Mitragotri, D.M. Pore, U.V. Desai, P.P. Wadgaonkar, Catal. Commun. 9 (2008)
1822–1826.
[25] B. Wang, Y. Gu, L. Yang, J. Suo, O. Kenichi, Catal. Lett. 96 (2004) 71–74.
[26] B. Wang, Y. Gu, C. Luo, T. Yang, L. Yang, J. Suo, Tetrahedron Lett. 45 (2004)
3369–3372.
[27] J.S. Yadav, P.P. Rao, D. Sreenu, R.S. Rao, V.N. Kumar, K. Nagaiah, A.R. Prasad,
Tetrahedron Lett. 46 (2005) 7249–7253.
Covalent functionalization of sulfamic acid onto the magnetic
Fe3O4 nanoparticles is successfully achieved by a multiple syn-
thetic procedure which is confirmed with XRD, FT-IR, TGA, and TEM.
The most interesting features of the present work include durabil-
ity as well as efficient catalytic activity for one-pot synthesis of
␣-amino nitriles via three-component coupling reactions of alde-
hydes (or ketones), amines and trimethylsilyl cyanide in water, at
room temperature. This method offers several advantages includ-
ing high yield, short reaction time, simple work-up procedure, ease
of separation, and recyclability of the magnetic catalyst, as well as
the ability to tolerate a wide variety of substitutions in the reagents.
[28] M.M. Heravi, L. Ranjbar, F. Derikvand, B. Alimadadi, Mol. Divers. 12 (2008)
191–196.
References
[29] T.S. Jin, G. Sun, Y.W. Li, T.S. Li, Green Chem. 4 (2002) 255–258.
[30] L. Daohua, W. Bi, Huaxe Shijie 41 (2000) 373–377.
[1] R. Anwander, Chem. Mater. 13 (2001) 4419–4438.
[2] S. Kobayashi, R. Akiyama, Chem. Commun. (2003) 449–460.
[3] K. Mori, S. Kanai, T. Hara, T. Mizugaki, K. Ebitani, K. Jitsukawa, K. Kaneda, Chem.
Mater. 19 (2007) 1249–1256.
[4] A.M. Argo, J.F. Odzak, F.S. Lai, B.C. Gates, Nature 415 (2002) 623–626.
[5] C. Copeˇıret, M. Chabanas, R.P. Saint-Arroman, J.M. Basset, Angew. Chem. Int. Ed.
42 (2003) 156–181.
[31] B. Wang, L. Yang, J. Suo, Synth. Commun. 33 (2003) 3929–3934.
[32] B. Wang, L. Yang, J. Suo, Tetrahedron Lett. 44 (2003) 5037–5039.
[33] X. Liu, Z. Ma, J. Xing, H. Liu, J. Magn. Magn. Mater. 270 (2004) 1–6.
[34] Y. Jiang, J. Jiang, Q. Gao, M. Ruan, H. Yu, L. Qi, Nanotechnology 19 (2008) 75714.
[35] B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, third ed., Prentice-Hall,
Englewood Cliffs, 2001.
[6] A.H. Lu, E.L. Salabas, F. Schuth, Angew. Chem. Int. Ed. 46 (2007) 1222–1244.
[7] B. Hu, J. Pan, H.L. Yu, J.W. Liu, J.H. Xu, Process Biochem. 44 (2009) 1019–1024.
[8] S. Bai, Z. Guo, W. Liu, Y. Sun, Food Chem. 96 (2006) 1–7.
[9] C.S. Gill, B.A. Price, C.W. Jones, J. Catal. 251 (2007) 145–152.
[10] A. Taher, J.B. Kim, J.Y. Jung, W.S. Ahn, M.J. Jin, Synlett (2009) 2477–2482.
[11] S.C. Tsang, V. Caps, I. Paraskevas, D. Chadwick, D. Thompsett, Angew. Chem. Int.
Ed. 43 (2004) 5645–5649.
[12] O.C. Dalaigh, A.S. Corr, Y. Gun’ko, J.S. Connon, Angew. Chem. Int. Ed. 46 (2007)
4329–4332.
[13] Y. Zhang, Y. Zhao, C. Xia, J. Mol. Catal. A: Chem. 306 (2009) 107–112.
[14] X. Shen, X. Fang, Y. Zhou, H. Liang, Chem. Lett. 33 (2004) 1468–1469.
[15] M. Ma, Y. Zhang, W. Yu, H. Shen, H. Zhang, N. Gu, Colloid Surf. A 212 (2003)
219–226.
[36] R.M. Cornell, U. Schwertmann, The Iron Oxides, VCH, New York, 1996.
[37] Z.M. Rao, T.H. Wu, S.Y. Peng, Acta Phys. Chim. Sin. 11 (1995) 395–399.
[38] R.D. Waldron, Phys. Rev. 99 (1955) 1727–1735.
[39] Z. Xu, Q. Liu, J.A. Finch, Appl. Surf. Sci. 120 (1997) 269–278.
[40] Z.L. Shen, S.J. Ji, T.P. Loh, Tetrahedron 64 (2008) 8159–8163.
[41] B. Karimi, A.A. Safari, J. Organomet. Chem. 693 (2008) 2967–2970.
[42] W.Y. Chen, J. Lu, Synlett (2005) 2293–2296.
[43] J.S. Yadav, B.V.S. Reddy, B. Eshwaraiah, M. Srinivas, Tetrahedron 60 (2004)
1767–1771.
[44] A. Majhi, S.S. Kim, S.T. Kadam, Appl. Organometal. Chem. 22 (2008) 705–711.
[45] U.V. Desai, S.D. Mitragotri, T.S. Thopate, D.M. Pore, P.P. Wadgaonkar, Monatsh.
Chem. 138 (2007) 759–762.
[46] K. Niknam, D. Saberi, M.N. Sefat, Tetrahedron Lett. 51 (2010) 2959–2962.