1396
I. V. Magedov et al. / Bioorg. Med. Chem. Lett. 18 (2008) 1392–1396
Data Centre and the allocated deposition numbers are
CCDC 669040 and 669041, respectively. The detailed
structure descriptions will be published elsewhere.
and M.Yu.A. are grateful to NSF/DMR (Grant
0420863) for the acquisition of X-ray single crystal dif-
fractometer and to the Distributed Nanomaterials Char-
acterization Network in the framework of New Mexico
NSF EPSCoR Nanoscience initiative. We thank Profes-
sors Tatiana V. Timofeeva and Snezna Rogelj for their
kind assistance with X-ray crystallography and flow
cytometry, respectively.
10. The substituted N-(sulfonamido)-acetophenones were
prepared in the following way. To the solution of the
hydrochloride of a required aminomethylaryl ketone
(30 mmol) in H2O (30 mL) was added a corresponding
sulfonyl chloride (30 mmol) in acetone (70 mL) dropwise
with stirring at 10 ꢁC. Et3N (65 mmol) was then added
with vigorous stirring over 1 h. The reaction mixture was
further stirred for additional 1.5 h at the same temperature
and the precipitate was collected by vacuum filtration. The
filtrate was reduced in volume to one-half of the original
and additional precipitate was collected by filtration. The
precipitates were combined and recrystallized from etha-
nol. The yields were in the range of 86–92%.
References and notes
1. Butler, M. S. J. Nat. Prod. 2004, 67, 2141.
2. Bellina, F.; Rossi, R. Tetrahedron 2006, 62, 7213.
3. For some examples, see: Green, M. P.; Prodger, J. C.;
Hayes, C. J. Tetrahedron Lett. 2002, 43, 6609; Batey, R.
A.; Simonic, P. D.; Lin, D.; Smyj, R. P.; Lough, A. J.
Chem. Commun. 1999, 651; Ulbrich, H.; Fiebich, B.;
Dannhardt, G. Eur. J. Med. Chem. 2002, 37, 953.
11. A representative procedure for the synthesis of cis and trans
pyrrolines c-1 and t-1: To a solution of benzaldehyde
(95 mg, 0.9 mmol), malononitrile (59 mg, 0.9 mmol)
in EtOH (5 mL) were added Et3N (0.05 mL) and
N-(p-nitrobenzenesufonamido)-acetophenone
(290 mg,
4. Ruegg, U. T.; Burgess, G. M. Trends Pharmacol. Sci.
¨
1989, 10, 218.
0.9 mmol). The mixture was refluxed for 1.5 h and cooled
to room temperature. The formed precipitate was isolated
by filtration and washed with cold ethanol (2 · 3 mL) to
yield a mixture of pyrrolines c-1 and t-1. The mixture was
suspended in MeCN (25 mL) and refluxed for 30 min.
After cooling the suspension to room temperature the
solid was isolated by filtration and washed with methanol
(3 · 2 mL) to yield pure cis pyrroline c-1 as a yellow solid
(124 mg, 29%). The filtrate was evaporated to dryness to
give pure trans pyrroline t-1 as a yellow solid (265 mg,
62%). c-1: mp 201 ꢁC (MeCN); 1H NMR (DMSO-d6) d
8.53 (d, J = 8.8 Hz, 2H), 8.38 (d, J = 8.8 Hz, 2H), 7.65 (d,
J = 7.7 Hz, 2H), 7.49 (t, J = 7.4 Hz, 1H), 7.32 (d,
J = 7.4 Hz, 1H), 7.17 (s, 2H), 6.97 (s, 2H), 6.91 (s, 1H),
6.38 (d, J = 11.0 Hz, 1H), 4.77 (d, J = 11.0 Hz, 1H); 13C
NMR (DMSO-d6) d 194.2, 155.0, 151.3, 143.0, 136.4,
135.5, 134.0, 129.9, 128.8, 128.3, 128.0, 125.5, 118.2, 67.5,
62.7, 47.1. HRMS m/z (ESI) calcd for C24H19N4O5S
(M+H+) 475.1076, found 475.1058. t-1: mp 194 ꢁC
(MeCN); 1H NMR (DMSO-d6) d 8.47 (d, J = 8.3 Hz,
2H), 8.34 (d, J = 8.3 Hz, 2H), 7.90 (d, J = 7.4 Hz, 2H),
7.74 (t, J = 6.6 Hz, 1H), 7.59 (d, J = 7.4 Hz, 2H), 7.29 (s,
2H), 7.22 (t, J = 7.2 Hz, 1H), 7.11 (d, J = 7.2 Hz, 2H), 6.51
(d, J = 7.2 Hz, 2H), 5.56 (s, 1H), 3.83 (s, 1H); 13C NMR
(DMSO-d6) d 193.3, 154.4, 151.4, 142.5, 141.6, 135.0,
133.5, 129.9, 129.6, 128.3, 127.2, 125.6, 118.1, 71.0, 62.0,
47.0. HRMS m/z (ESI) calcd for C24H19N4O5S (M+H+)
475.1076, found 475.1079.
5. Castellano, S.; Fiji, H. D. G.; Kinderman, S. S.; Watan-
abe, M.; de Leon, P.; Tamanoi, F.; Kwon, O. J. Am.
Chem. Soc. 2007, 129, 5843.
6. Shvekhgeimer, M. G. A. Khim. Geterotsiklicheskikh
Soedin. 2003, 583.
7. For some recently developed methodologies for the
synthesis of pyrrolines and pyrrolidines, including MCR
approaches, see: Melhado, A. D.; Luparia, M.; Toste, F.
D. J. Am. Chem. Soc. 2007, 129, 12638; Blyumin, E. V.;
Gallon, H. J.; Yudin, A. K. Org. Lett. 2007, 9, 4677; Zhu,
X.-F.; Henry, C. E.; Kwon, O. Tetrahedron 2005, 61, 6276;
Huang, P.-Q. Synlett 2006, 1133; Hourcade, S.; Ferdenzi,
A.; Retailleau, P.; Mons, S.; Marazano, C. Eur. J. Org.
Chem. 2005, 1302; Garner, P.; Kaniskan, H. U. J. Org.
Chem. 2005, 70, 10868.
8. Evdokimov, N. M.; Magedov, I. V.; Kireev, A. S.;
Kornienko, A. Org. Lett. 2006, 8, 899; Evdokimov, N.
M.; Kireev, A. S.; Yakovenko, A. A.; Antipin, M. Y.;
Magedov, I. V.; Kornienko, A. Tetrahedron Lett. 2006, 47,
9309; Evdokimov, N. M.; Kireev, A. S.; Yakovenko, A.
A.; Antipin, M. Y.; Magedov, I. V.; Kornienko, A. J. Org.
Chem. 2007, 72, 3443; Magedov, I. V.; Manpadi, M.;
Evdokimov, N. M.; Elias, E. M.; Rozhkova, E.; Ogasa-
wara, M. A.; Bettale, J. D.; Przeval’skii, N. M.; Rogelj, S.;
Kornienko, A. Bioorg. Med. Chem. Lett. 2007, 17, 3872;
Manpadi, M.; Uglinskii, P. Y.; Rastogi, S. K.; Cotter, K.
M.; Wong, Y-S. C.; Anderson, L. A.; Ortega, A. J.; Van
Slambrouck, S.; Steelant, W. F. A.; Rogelj, S.; Tongwa,
P.; Antipin, M. Y.; Magedov, I. V.; Kornienko, A. Org.
Biomol. Chem. 2007, 5, 3865.
12. Mosmann, T. J. Immunol. Methods 1983, 65, 55.
13. These observations also argue against the oxidation of the
pyrrolines in the cell culture to the corresponding pyrroles,
because in this case the biological effects of trans and cis
pyrrolines would be expected to be similar.
9. The crystal structures of these cis and trans pyrrolines
have been deposited at the Cambridge Crystallographic