Full Paper
[5] W. A. Lazier, H. Adkins, J. Am. Chem. Soc. 1924, 46, 741–746.
[6] Y. Sprinzak, J. Am. Chem. Soc. 1956, 78, 3207–3208.
aminopyridine 4 (1.0 mmol), alcohol 2 (1.5 mmol), Ru catalyst a
(5.0 mg, 0.5 mol-%), and KOH (11.2 mg, 20 mol-%) in toluene (1 mL).
The reaction mixture was heated at 140 °C for 2 h and then cooled
to room temperature. The reaction mixture was directly concen-
trated and purified by preparative TLC (CH2Cl2/petroleum ether =
1:1) to provide the desired product.
[7]
[8]
S. Miyano, Chem. Pharm. Bull. 1965, 13, 1135–1137.
É. A. Zvezdina, A. F. Pozharskii, V. I. Sokolov, Chem. Heterocycl. Compd.
1970, 6, 389–391.
[9]
[10]
[11]
S. Miyano, M. Nakao, Chem. Pharm. Bull. 1972, 20, 1328–1331.
R. Martínez, D. J. Ramón, M. Yus, J. Org. Chem. 2008, 73, 9778–9780.
a) Q. Xu, Q. Li, X. Zhu, J. Chen, Adv. Synth. Catal. 2013, 355, 73–80; b) Q.
Xu, H. Xie, E.-L. Zhang, X. Ma, J. Chen, X.-C. Yu, H. Li, Green Chem. 2016,
18, 3940–3944.
General Procedure for the Syntheses of Symmetric N,N′-Di-
alkylated Products 7: To a 15 mL sealed tube were added 2,6-
diaminopyridine 6 (0.4 mmol), alcohol 2 (1.0 mmol), Ru catalyst a
(4.0 mg, 1 mol-%), and KOH (9.0 mg, 40 mol-%) in toluene (1 mL).
The reaction mixture was heated at 140 °C for 12 h and then cooled
to room temperature. The reaction mixture was directly concen-
trated and purified by preparative TLC (pure CH2Cl2) to provide the
desired product.
[12]
a) R. R. Donthiri, V. Pappula, D. C. Mohan, H. H. Gaywala, S. Adimurthy,
J. Org. Chem. 2013, 78, 6775–6781; b) S. Li, X. Li, Q. Yuan, X. Shi, Q. Xu,
Green Chem. 2015, 17, 3260–3265.
[13]
[14]
[15]
Q.-Q. Li, Z.-F. Xiao, C.-Z. Yao, H.-X. Zheng, Y.-B. Kang, Org. Lett. 2015, 17,
5328–5331.
a) Z. Zhang, C. Miao, C. Xia, W. Sun, Org. Lett. 2016, 18, 1522–1525; b) Y.
Du, S. Oishi, S. Saito, Chem. Eur. J. 2011, 17, 12262–12267.
V. N. Tsarev, Y. Morioka, J. Caner, Q. Wang, R. Ushimaru, A. Kudo, H. Naka,
S. Saito, Org. Lett. 2015, 17, 2530–2533.
General Procedure for the Syntheses of N-Alkylated Products 8:
To a 15 mL sealed tube were added 2,6-diaminopyridine 6
(3.0 mmol), alcohol 2 (1.0 mmol), Ru catalyst a (10 mg, 1 mol-%),
and KOH (11.2 mg, 20 mol-%) in toluene (2 mL). The reaction mix-
ture was heated at 140 °C for 12 h and then cooled to room temper-
ature. The reaction mixture was directly concentrated and purified
by preparative TLC (CH2Cl2/MeOH = 50:1) to provide the desired
product.
[16]
[17]
K.-I. Shimizu, Catal. Sci. Technol. 2015, 5, 1412–1427.
R. Grigg, T. R. B. Mitchell, S. Sutthivaiyakit, N. Tongpenyai, J. Chem. Soc.,
Chem. Commun. 1981, 611–612.
[18]
[19]
a) Y. Watanabe, Y. Tsuji, Y. Ohsugi, Tetrahedron Lett. 1981, 22, 2667–2670;
b) Y. Watanabe, Y. Tsuji, H. Ige, Y. Ohsugi, T. Ohta, J. Org. Chem. 1984, 49,
3359–3363.
a) C. Gunanathan, D. Milstein, Angew. Chem. Int. Ed. 2008, 47, 8661–8664;
Angew. Chem. 2008, 120, 8789–8792; b) C. Gunanathan, D. Milstein, Acc.
Chem. Res. 2011, 44, 588–602; c) D. Srimani, Y. Ben-David, D. Milstein,
Angew. Chem. Int. Ed. 2013, 52, 4012–4015; Angew. Chem. 2013, 125,
4104–4107; d) D. Srimani, Y. Ben-David, D. Milstein, Chem. Commun.
2013, 49, 6632–6634.
General Procedures for the Syntheses of Asymmetric N,N′-Di-
alkylated Products 9: To a 15 mL sealed tube were added 8
(0.4 mmol), alcohol 2 (0.6 mmol), Ru catalyst a (4 mg, 1.0 mol-%),
and KOH (11.2 mg, 50 mol-%) in toluene (1 mL). The reaction mix-
ture was heated at 140 °C for 12 h and then cooled to room temper-
ature. The reaction mixture was directly concentrated and purified
by preparative TLC (pure CH2Cl2) to provide the desired product.
[20]
a) S. Imm, S. Bähn, M. Zhang, L. Neubert, H. Neumann, F. Klasovsky, J.
Pfeffer, T. Haas, M. Beller, Angew. Chem. Int. Ed. 2011, 50, 7599–7603;
Angew. Chem. 2011, 123, 7741–7745; b) M. Zhang, H. Neumann, M. Bel-
ler, Angew. Chem. Int. Ed. 2013, 52, 597–601; Angew. Chem. 2013, 125,
625–629; c) M. Peña-López, H. Neumann, M. Beller, Angew. Chem. Int. Ed.
2016, 55, 7826–7830; Angew. Chem. 2016, 128, 7957–7961.
a) M. H. S. A. Hamid, C. L. Allen, G. W. Lamb, A. C. Maxwell, H. C. Maytum,
A. J. A. Watson, J. M. J. Williams, J. Am. Chem. Soc. 2009, 131, 1766–1774;
b) A. J. A. Watson, A. C. Maxwell, J. M. J. Williams, J. Org. Chem. 2011, 76,
2328–2331.
a) S. Michlik, T. Hille, R. Kempe, Adv. Synth. Catal. 2012, 354, 847–862;
b) S. Michlik, R. Kempe, Angew. Chem. Int. Ed. 2013, 52, 6326–6329;
Angew. Chem. 2013, 125, 6450–6454; c) S. Michlik, R. Kempe, Nat. Chem.
2013, 5, 140–144; d) S. Ruch, T. Irrgang, R. Kempe, Chem. Eur. J. 2014,
20, 13279–13285.
Acknowledgments
Financial support from the National Natural Science Foundation
of China (Grant Nos. 21528201 and 21672192), the Outstanding
Young Talent Research Fund of Zhengzhou University
(1421316036), and the Program for Science & Technology Inno-
vation Talents in Universities of Henan Province (17HASTIT004)
is gratefully appreciated.
[21]
[22]
Keywords: Homogeneous catalysis · Ruthenium · Pincer
complexes · Alkylation · Hydrogen autotransfer
[23]
[24]
a) K.-I. Fujita, T. Fujii, R. Yamaguchi, Org. Lett. 2004, 6, 3525–3528; b) R.
Kawahara, K.-I. Fujita, R. Yamaguchi, J. Am. Chem. Soc. 2010, 132, 15108–
15111; c) M. Zhu, K.-I. Fujita, R. Yamaguchi, Org. Lett. 2010, 12, 1336–
1339; d) R. Kawahara, K.-I. Fujita, R. Yamaguchi, Adv. Synth. Catal. 2011,
353, 1161–1168.
a) D. Weickmann, W. Frey, B. Plietker, Chem. Eur. J. 2013, 19, 2741–2748;
b) X. Ye, P. N. Plessow, M. K. Brinks, M. Schelwies, T. Schaub, F. Rominger,
R. Paciello, M. Limbach, P. Hofmann, J. Am. Chem. Soc. 2014, 136, 5923–
5929; c) N. J. Oldenhuis, V. M. Dong, Z. Guan, J. Am. Chem. Soc. 2014,
136, 12548–12551; d) X. Xie, H. V. Huynh, ACS Catal. 2015, 5, 4143–4151;
e) B. Pan, B. Liu, E. Yue, Q. Liu, X. Yang, Z. Wang, W.-H. Sun, ACS Catal.
2016, 6, 1247–1253; f) K. O. Marichev, J. M. Takacs, ACS Catal. 2016, 6,
2205–2210; g) A. B. Enyong, B. Moasser, J. Org. Chem. 2014, 79, 7553–
7563.
[1] a) S. A. Lawrence, Amines: Synthesis Properties and Applications, Cam-
bridge University, Cambridge, 2004; b) B. R. Brown, The Organic Chemis-
try of Aliphatic Nitrogen Compounds; Cambridge University, Cambridge,
2004.
[2] a) W. Zhou, M. Fan, J. Yin, Y. Jiang, D. Ma, J. Am. Chem. Soc. 2015, 137,
11942–11945; b) D. S. Surry, S. L. Buchwald, Angew. Chem. Int. Ed. 2008,
47, 6338–6361; Angew. Chem. 2008, 120, 6438–6461.
[3] For reviews, please see: a) G. E. Dobereiner, R. H. Crabtree, Chem. Rev.
2010, 110, 681–703; b) G. Guillena, D. J. Ramón, M. Yus, Chem. Rev. 2010,
110, 1611–1641; c) A. J. A. Watson, J. M. J. Williams, Science 2010, 329,
635–636; d) S. Bähn, S. Imm, L. Neubert, M. Zhang, H. Neumann, M.
Beller, ChemCatChem 2011, 3, 1853–1864; e) C. Gunanathan, D. Milstein,
Science 2013, 341, 249–260; f) J. Schranck, A. Tlili, M. Beller, Angew. Chem.
Int. Ed. 2013, 52, 7642–7644; Angew. Chem. 2013, 125, 7795–7797; g) S.
Pan, T. Shibata, ACS Catal. 2013, 3, 704–712; h) Q. Yang, Q. Wang, Z. Yu,
Chem. Soc. Rev. 2015, 44, 2305–2329; i) A. Nandakumar, S. P. Midya, V. G.
Landge, E. Balaraman, Angew. Chem. Int. Ed. 2015, 54, 11022–11034;
Angew. Chem. 2015, 127, 11174–11186; j) X. Ma, C. Su, Q. Xu, Top. Curr.
Chem. 2016, 374, 1–74.
[25]
a) F. Li, H. Shan, L. Chen, Q. Kang, P. Zou, Chem. Commun. 2012, 48, 603–
605; b) D. Wang, K. Zhao, C. Xu, H. Miao, Y. Ding, ACS Catal. 2014, 4,
3910–3918; c) Y. Zhang, C.-S. Lim, D. S. B. Sim, H.-J. Pan, Y. Zhao, Angew.
Chem. Int. Ed. 2014, 53, 1399–1403; Angew. Chem. 2014, 126, 1423–1427;
d) J.-Q. Li, P. G. Andersson, Chem. Commun. 2013, 49, 6131–6133; e) A.
Labed, F. Jiang, I. Labed, A. Lator, M. Peters, M. Achard, A. Kabouche, Z.
Kabouche, G. V. M. Sharma, C. Bruneau, ChemCatChem 2015, 7, 1090–
1096; f) Q. Zou, C. Wang, J. Smith, D. Xue, J. Xiao, Chem. Eur. J. 2015, 21,
9656–9661; g) L. Lu, J. Ma, P. Qu, F. Li, Org. Lett. 2015, 17, 2350–2353; h)
F. Li, L. Lu, P. Liu, Org. Lett. 2016, 18, 2580–2583; i) A. Wetzel, S. Wöckel,
[4] J. U. Nef, Liebigs Ann. Chem. 1901, 318, 137–230.
Eur. J. Org. Chem. 2017, 3481–3486
3485
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim