J.A. Mikroyannidis et al. / Organic Electronics 12 (2011) 774–784
783
where eoer represent the permittivity of the material,
the mobility, is the field activation factor, and d is the
thickness of the active layer and voltage V = Vappl ꢁ Vbi.
l is
Acknowledgment
c
We are thankful to Prof. Y.K. Vijay of Thin film and
Membrane Science Laboratory, University of Rajasthan
Jaipur (Raj.) for allowing us to undertake the device fabri-
cation and characterization in his laboratory.
The hole (lh) and electron (le) mobilities of the film cast
from DCB are 5.6 ꢃ 10ꢁ6 and 3.4 ꢃ 10ꢁ4 cm2/Vs, respec-
tively. The lh and le for the film cast from the CN/DCB
are about 1.8 ꢃ 10ꢁ5 and 2.2 ꢃ 10ꢁ4 cm2/Vs, respectively.
The smaller value of le/lh (60.7 and 12.2 for CB and CN/
DCB solvent cast film, respectively) indicates a more
balanced charge transport. The more balanced charge
transport contributes to the higher Jsc and higher PCE.
The difference in PV performance for the devices cast
from DCB and CN/DCB solvents is most likely due to the
change in the morphology. The effect of the solvents on
the active layer morphology was also examined by the
AFM technique. Fig. 9 compares the AFM images of the
blend films of FL:F cast from the DCB and CN/DCB solvents.
For the FL:F blend films cast from DCB solvent, its root
mean square (rms) roughness is about 0.45 nm. However,
when the film is cast from the CN/DCB solvent, the rms
roughness is about 0.78 nm. Higher roughness of the film
will give higher device efficiency. The rough surface is
probably a signature of self organization of organic semi-
conductor, which in turn enhances ordered structure for-
mation in thin films and increases the carrier mobility
[57]. The increased roughness of the active layer enhances
the D–A interfacial area leading to efficient dissociation of
the excitons into free charge carriers.
References
[1] J. Peet, J.Y. Kim, N.E. Coates, W.L. Ma, D. Moses, A.J. Heeger, G.C.
Bazan, Nat. Mater. 6 (2007) 497.
[2] J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T.Q. Nguyen, M. Dante, A.J.
Heeger, Science 317 (2007) 222.
[3] S.H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J.S. Moon, D. Moses, M.
Leclerc, K. Lee, A.J. Heeger, Nat. Photonics 3 (2009) 297.
[4] (a) M.C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A.J.
Heeger, C.J. Brabec, Adv. Mater. 18 (2006) 789;
(b) G. Dennler, M.C. Scharber, T. Ameri, P. Denk, K. Forberich, C.
Waldauf, C.J. Brabec, Adv. Mater. 20 (2008) 579.
[5] Y. Li, Y. Zou, Adv. Mater. 20 (2007) 2952.
[6] W. Ma, C. Yang, X. Gong, K. Lee, A.J. Heeger, Adv. Funct. Mater. 15
(2005) 1617.
[7] M. Reyes, K. Kim, D.L. Carroll, Appl. Phys. Lett. 87 (2005) 083506.
[8] Y. Kim, S. Cook, S.M. Tuladhar, S.A. Choulis, J. Nelson, J.R. Durrant,
D.D.C. Bradley, M. Giles, I. McCulloch, C.S. Ha, M. Ree, Nat. Mater. 5
(2006) 197.
[9] Q. Wei, T. Nishizawa, K. Tajima, K. Hashimoto, Adv. Mater. 20 (2008)
2211.
[10] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang,
Nat. Mater. 4 (2004) 864.
[11] M. Campoy-Quilles, T. Ferenczil, T. Agostinelli, P.G. Etchegoin, Y.
Kim, T.D. Anthopoulos, P.N. Stavrinou, D.D.C. Bradley, J. Nelson, Nat.
Mater. 7 (2008) 158.
[12] (a) J. Chen, Y. Cao, Acc. Chem. Res. 42 (2009) 1709;
(b) Y.J. Cheng, S.H. Yang, C.S. Hsu, Chem. Rev. 109 (2009) 5868.
[13] S. Gunes, H. Neugebauer, N.S. Sariciftci, Chem. Rev. 104 (2007) 1324.
[14] M.T. Lloyd, J.E. Anthony, G.G. Malliaras, Mater. Today 11 (2007) 34.
[15] B.P. Rand, J. Genoe, P. Heremans, J. Poortmans, Prog. Photovoltaics:
Res. Appl. 15 (2007) 659.
[16] J. Roncali, P. Frere, P. Blanchard, R. de Bettignies, M. Turbiez, S.
Roquet, P. Leriche, Y. Nicolas, Thin Solid Films 567 (2006) 511.
[17] X.B. Sun, Y. Zhou, W. Wu, Y. Liu, W. Tian, G. Yu, W. Qiu, S. Chen, D.J.
Zhu, J. Phys. Chem. B 110 (2006) 7702.
[18] N. Kopidakis, W.J. Mitchell, J. van de Lagemaat, D.S. Ginley, G.
Rumbles, S.E. Shaheen, Appl. Phys. Lett. 89 (2008) 103524.
[19] M.T. Lloyd, A.C. Mayer, S. Subramanian, D.A. Mourey, D.J. Herman, A.
Bapat, V.J.E. Anthony, G.G. Malliaras, J. Am. Chem. Soc. 129 (2007)
9144.
[20] P.F. Xia, X.J. Feng, J. Lu, S.W. Tsang, R. Movileanu, Y. Tao, M.S. Wong,
Adv. Mater. 20 (2008) 4810.
[21] S. Roquet, A. Cravino, P. Leriche, O. Alévêque, P. Frére, J. Roncali, J.
Am. Chem. Soc. 128 (2006) 3459.
[22] F. Silvestri, M.D. Irwin, L. Beverina, A. Facchetti, G.A. Pagani, T.J.
Marks, J. Am. Chem. Soc. 130 (2008) 17640.
[23] N.M. Kronenberg, M. Deppisch, F. Wurthner, H.W.A. Lademann, K.
Deing, K. Meerholz, Chem. Commun. (2008) 6489.
[24] T. Rousseau, A. Cravino, T. Bura, G. Ulrich, R. Ziessel, J. Roncali, Chem.
Commun. (2009) 1673.
4. Conclusions
Two soluble and low band gap SMs, PH and FL, were
synthesized. They contained the D–A structure permitting
an ICT. The absorption spectra were broad with long-wave-
length absorption maximum at 605–643 nm and optical
band gap of 1.64–1.66 eV, which is lower than that of
P3HT. The HOMO and LUMO levels of both SMs estimated
from cyclic voltammetry, suggest that they can be used as
donor materials for organic BHJ PV devices. The solution
processed organic BHJ PV devices using PH:PCBM and
FL:PCBM cast from chloroform solvent show PCE about
1.02% and 1.42%, respectively. We have fabricated BHJ
organic PV devices based on the FL:PCBM using various
solvents such as chloroform, chlorobenzene, o-dichloro-
benzene and mixed CN/DCB and investigated the influence
of these solvents on the performance of the solar cells. The
device with mixed CN/DCB solvents shows improved
performance of PCE of 3.0%. The improved PCE is mainly
attributed to the increased value of Jsc, which is due to
the enhancement in the crystalline nature of the blend.
We have also fabricated BHJ PV devices based on FL:F
blend to improve the light harvesting efficiency in the low-
er wavelength region and achieved PCE of about 3.62% and
4.38% with DCB and CN/DCB cast blend, respectively. The
improved PCE of the device with F as electron acceptor is
mainly attributed to both increase in Jsc and Voc. The fur-
ther improvement in the PCE, when the blend is cast from
mixed CN/DCB, could be ascribed to efficient exciton disso-
ciation at the D–A interface and a better morphological
structure of the active layer.
[25] (a) A. Tamayo, T. Kent, M. Tantitiwat, M.A. Dante, J. Rogers, T.Q.
Nguyen, Energy Environ. Sci. 2 (2009) 1180;
(b) Y. Li, Q. Guo, Z. Li, L. Pei, W. Tian, Energy Environ. Sci.
(c) J.A. Mikroyannidis, D.V. Tsagkournos, S.S. Sharma, A. Kumar, Y.K.
Vijay, G.D. Sharma, Sol. Energy Mater. Sol. Cells 94 (2010) 2318;
(d) A.B. Tamayo, B. Walker, T.Q. Nguyen, J. Phys. Chem. C 112 (2008)
11545;
(e) B. Walker, A.B. Tamayo, X.D. Dang, P. Zalar, J.M. Seo, A. Garcia, M.
Tantiwiwat, T.Q. Nguyan, Adv. Funct. Mater. 19 (2009) 3063;
(f) X. Zhao, C. Piliego, B. Kim, D.A. Poulsen, B. Ma, D.A. Unruh, J.M.J.
(g) B. Yin, L. Yang, Y. Liu, Y. Chen, Q. Qi, F. Zhang, S. Yin, Appl. Phys.
Lett. 97 (2010) 023303;
(h) A.B. Tamayo, X.D. Dang, B. Walker, J. Seo, T. Kent, T.Q. Nguyen,
Appl. Phys. Lett. 94 (2009) 103301.
[26] J. Roncali, Chem. Rev. 97 (1997) 173.
[27] C. Winder, N.S. Sariciftci, J. Mater. Chem. 14 (2004) 1077.