2-halo-1,3(Z)-dienes,8 and allylic alcohols.9 Thus, it is highly
desirable to develop efficient methodologies for the synthesis
of optically active 2,3-allenols with high ee value. Usually,
optically active 2,3-allenols are prepared by the enantioselective
reduction of 1,2-allenyl ketones,10 the reaction of optically active
propargylic/allenic metallic reagents with carbonyl groups,11
Crabbe´ reaction of optically active terminal propargylic alco-
hols,12 the cross-coupling reaction with optically active alkynyl
oxiranes13 and the kinetic resolution of racemic 2,3-allenols.14
However, there are still some difficulties: some of the reagents
or catalysts for these known methods are not easily available
or the enantioselectivities are not satisfactory and the kinetic
resolution of racemic 2,3-allenols is restricted to one or two
carbon 1,2-allenyl carbinols.14 In our previous report, we
disclosed a synthesis of optically active 2,3-allenols from the
reaction of easily available propargylic methyl ethers with
Grignard reagents in moderate yield with up to 99% ee, but in
some cases the yield is not satisfactory, and the 1-substituent
group is limited to an aryl group.15 Herein, we wish to report
a more efficient and general synthesis of optically active 2,3-
allenols from optically active 1-substituted 4-chloro-2-butyn-
1-ols of high ee value in moderate to high yields by using CuCN
as the catalyst.
An Efficient CuCN-Catalyzed Synthesis of
Optically Active 2,3-Allenols from Optically
Active 1-Substituted 4-Chloro-2-butyn-1-ols
Jing Li, Wangqing Kong, Chunling Fu, and Shengming Ma*
Laboratory of Molecular Recognition and Synthesis,
Department of Chemistry, Zhejiang UniVersity,
Hangzhou 310027, Zhejiang, People’s Republic of China
ReceiVed April 4, 2009
Synthesis of the Starting Materials. The racemic starting
materials 3a-e can be prepared by treating propargylic chloride
with n-BuLi and subsequent reaction with the corresponding
aldehydes16 (Scheme 1).
The sequential treatment of optically active terminal prop-
argylic alcohols with n-BuLi/(HCHO)n and regioselective
chlorination afforded the corresponding optically active
4-chloro-2-butyn-1-ols. With R1 being a methyl or an ethyl
group, an alternative for the synthesis of the corresponding
optically active propargylic alcohols is the Novozym 435-
catalyzed kinetic resolution of these racemic 4-chloro-2-
butyn-1-ols. The subsequent reaction of these optically active
4-chloro-2-butyn-1-ols with the corresponding Grignard
reagents under the catalysis of 5 mol % of CuCN afforded
the optically active secondary 2,3-allenols in good yields with
up to >99% ee.
(3) (a) Olsson, L.-I.; Claesson, A. Synthesis 1979, 743. (b) Nikam, S. S.;
Chu, K.-H.; Wang, K. K. J. Org. Chem. 1986, 51, 745. (c) Mashall, J. A.; Wang,
X.-J. J. Org. Chem. 1990, 55, 2995. (d) Mashall, J. A.; Pinney, K. G. J. Org.
Chem. 1993, 58, 7180. (e) Mashall, J. A.; Yu, R. H.; Perkins, J. F. J. Org. Chem.
1995, 60, 5550. (f) Mashall, J. A.; Sehon, C. A. J. Org. Chem. 1995, 60, 5966.
(g) Ma, S.; Gao, W. Tetrahedron Lett. 2000, 41, 8933. (h) Hoffmann-Ro¨der,
A.; Krause, N. Org. Lett. 2001, 3, 2537. (i) Ma, S.; Gao, W. J. Org. Chem.
2002, 67, 6104. (j) Deng, Y.; Yu, Y.; Ma, S. J. Org. Chem. 2008, 73, 585. (k)
Deng, Y.; Li, J.; Ma, S. Chem.sEur. J. 2008, 14, 4263. (l) Li, J.; Fu, C.; Chen,
G.; Chai, G.; Ma, S. AdV. Synth. Catal. 2008, 350, 1376. (m) Deng, Y.; Shi, Y.;
Ma, S. Org. Lett. 2009, 11, 1205.
(4) (a) Yoneda, E.; Kaneko, T.; Zhang, S.-W.; Onitsuka, K.; Takahashi, S.
Org. Lett. 2000, 2, 441. (b) Cheng, X.; Jiang, X.; Yu, Y.; Ma, S. J. Org. Chem.
2008, 73, 8960.
Allenes are a class of compounds with two orthogonal
π-bonds and have proven to be useful intermediates in organic
synthesis.1,2 Of particular interest is 2,3-allenols, which can be
used for the synthesis of 2,5-dihydrofurans,3 2(5H)-furanones,4
vinylic epoxides,5 ꢀ-halo-ꢀ,γ-alkenals,3l,6 ꢀ-halo-ꢀ,γ-alkenones,3l,7
(5) (a) Friesen, R. W.; Blouin, M. J. Org. Chem. 1993, 58, 1653. (b) Ma, S.;
Zhao, S. J. Am. Chem. Soc. 1999, 121, 7943.
(6) Fu, C.; Li, J.; Ma, S. Chem. Commun. 2005, 4119.
(7) He, J.-Q.; Shibata, D.; Ohno, C.; Okamoto, S. Tetrahedron Lett. 2008,
49, 6724.
(8) (a) Ma, S.; Wang, G. Tetrahedron Lett. 2002, 43, 5723. (b) Deng, Y.;
Jin, X.; Ma, S. J. Org. Chem. 2007, 72, 5901.
(9) Lu, Z.; Ma, S. AdV. Synth. Catal. 2007, 349, 1225.
* To whom correspondence should be addressed. Fax: (+86) 021-62609305.
(1) (a) Patai, S. The Chemistry of Ketenes, Allenes, and Related Compounds;
John Wiley & Sons: New York, 1980; Part 1. (b) Landor, S. R. The Chemistry
of The Allenes; Academic Press: London, UK, 1982; Vols. 1-3. (c) Schuster,
H. F.; Coppola, G. M. Allenes in Organic Synthesis; John Wiley & Sons: New
York, 1984. (d) Krause, N.; Hashmi, A. S. K. Modern Allene Chemistry; Wiley-
VCH: Weinheim, Germany, 2004; Vols. 1 and 2.
(2) For reviews on the chemistry of allenes, see: (a) Zimmer, R.; Dinesh,
C. U.; Nandanan, E.; Khan, F. A. Chem. ReV. 2000, 100, 3067. (b) Marshall,
J. A. Chem. ReV. 2000, 100, 3163. (c) Hashmi, A. S. K. Angew. Chem., Int. Ed.
2000, 39, 3590. (d) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535.
(e) Bates, R.; Satcharoen, V. Chem. Soc. ReV. 2002, 31, 12. (f) Sydnes, L. K.
Chem. ReV. 2003, 103, 1133. (g) Ma, S. Acc. Chem. Res. 2003, 36, 701. (h)
Tius, M. A. Acc. Chem. Res. 2003, 36, 284. (i) Wei, L.-L.; Xiong, H.; Hsung,
R. P. Acc. Chem. Res. 2003, 36, 773. (j) Brandsma, L.; Nedolya, N. A. Synthesis
2004, 735. (k) Ma, S. Chem. ReV. 2005, 105, 2829. (l) Ma, S. Aldrichim. Acta
2007, 40, 91. (m) Brasholz, M.; Reissig, H.-U.; Zimmer, R. Acc. Chem. Res.
2009, 42, 45.
(10) Yu, C.-M.; Kim, C.; Kweon, J.-H. Chem. Commun. 2004, 2494.
(11) (a) Corey, E. J.; Yu, C.-M.; Lee, D.-H. J. Am. Chem. Soc. 1990, 112,
878. (b) Marshall, J. A.; Perkins, J. J. Org. Chem. 1994, 59, 3509. (c) Brown,
H. C.; Khire, U. R.; Narla, G. J. Org. Chem. 1995, 60, 8130. (d) Marshall, J. A.;
Adams, N. D. J. Org. Chem. 1997, 62, 8976. (e) Yu, C.-M.; Yoon, S.-K.; Baek,
K.; Lee, J.-Y. Angew. Chem., Int. Ed. 1998, 37, 2392. (f) Hernandez, E.;
Soderquist, J. A. Org. Lett. 2005, 7, 5397. (g) Hernandez, E.; Burgos, C. H.;
Alicea, E.; Soderquist, J. A. Org. Lett. 2006, 8, 4089. (h) Inoue, M.; Nakada,
M. Angew. Chem., Int. Ed. 2006, 45, 252. (i) Xia, G.; Yamamoto, H. J. Am.
Chem. Soc. 2007, 129, 496.
(12) Ma, S.; Hou, H.; Zhao, S.; Wang, G. Synthesis 2002, 1643.
(13) (a) Fu¨rstner, A.; Me´ndez, M. Angew. Chem., Int. Ed. 2003, 42, 5355.
(b) Miura, T.; Shimada, M.; Ku, S.-Y.; Tamai, T.; Murakami, M. Angew. Chem.,
Int. Ed. 2007, 46, 7101.
(14) (a) Xu, D.; Li, Z.; Ma, S. Chem.sEur. J. 2002, 8, 5012. (b) Xu, D.; Li,
Z.; Ma, S. Tetrahedron: Asymmetry 2003, 14, 3657.
(15) Li, J.; Zhou, C.; Fu, C.; Ma, S. Tetrahedron 2009, 65, 3695.
(16) Shimizu, I.; Sugiura, T.; Tsuji, J. J. Org. Chem. 1985, 50, 537.
5104 J. Org. Chem. 2009, 74, 5104–5106
10.1021/jo900710e CCC: $40.75 2009 American Chemical Society
Published on Web 05/28/2009