3194 Organometallics, Vol. 28, No. 11, 2009
Jime´nez et al.
carbonyl groups,3 and consequently hydrogenation of the CdC
bond is often achieved under mild conditions with high
specificity.4,5
Nevertheless, the design of suitable catalysts can open
kinetically viable pathways for the hydrogenation of the carbonyl
group in R,ꢀ-unsaturated carbonyl compounds, and therefore
the search for new selective systems remains an important
challenge. Reduction with molecular hydrogen may be achieved
by use of heterogeneous catalysts,4,6 which are not always
selective enough or tolerant to functional groups. Soluble
transition metal complexes are known to promote the chemose-
lective reduction of R,ꢀ-unsaturated aldehydes under hydrogen
transfer conditions with primary or secondary alcohols serving
as hydrogen donors;7,8 some examples are known of homoge-
neous catalysts promoting the preferential formation of unsatur-
ated alcohols by use of molecular hydrogen,9-11 perhaps the
most notable being Noyori’s ruthenium-based systems including
diamino and diphosphine ligands,8 water-soluble catalysts
containing ruthenium and sulfonated triphenylphosphine,12 and
bis-phosphine ruthenium(II) arene complexes.13 Nevertheless,
the development of new selective catalysts capable of promoting
this important transformation under mild reaction conditions
continues to be an interesting challenge.
Figure 1. Structure (ORTEP at 50% level) of complex 1 (only the
ipso carbons from the phenyl groups are shown for clarity).
phosphane ligands, including neutral tripodal ligands such as
[CH3C(CH2PPh2)3] and [PhP(CH2PPh2)3],18,19 to our knowledge
no applications of “PhBP3M” systems in catalysis have been
previously reported.
The anionic tripodal phosphanoborate ligand [PhB(CH2-
PPh2)3]- (henceforth referred to as PhBP3) displays interesting
structural and electronic properties that have been exploited in
the synthesis of new complexes of Fe, Ru, Co, Ir, Rh, and Ni
with interesting reactivity.14-17 In particular, iridium complexes
bearing PhBP3 can activate C-H and Si-H bonds;16 the unusual
ground state geometry of the pseudotetrahedral complex
[Co(PhBP3)I] can correlate with novel modes of reactivity15 that
could be exploited in unusual catalytic transformations. The
chemistry of complexes of rhodium with this anionic type of
ligand has been scarcely explored.16a,17 Although a good number
of hydrogenation catalysts are based on group VIII metals with
In this paper we describe the synthesis and some reactions
of rhodium complexes with the anionic PhBP3 ligand as well
as the regioselective hydrogenation of trans-cinnamaldehyde by
[{Ru(PhBP3)(µ-Cl)}2] and [Rh(PhBP3)(cod)], to yield prefer-
entially the allylic alcohol. The effects of various reaction
parameters on the hydrogenation activity and selectivity are also
discussed. Finally, applications to other R,ꢀ-unsaturated carbonyl
compounds (crotonaldehyde, 2-cyclohexenone) are also examined.
Results and Discussion
Synthesis and Reactivity Studies of [Rh(PhBP3)(cod)]
(1). Complex 1 was prepared straightforwardly in high yield
by metathesis of [{Rh(µ-Cl)(cod)}2] (cod ) 1,5-cyclooctadiene)
with [Li(tmen)][PhBP3] (tmen ) N,N,N′,N′-tetramethylethane-
1,2-diamine) in dichloromethane. The X-ray structure of 1
(Figure 1) shows a pentacoordinated rhodium center bonded to
the three phosphorus atoms of the anion [PhBP3]- and a
chelating 1,5-cyclooctadiene ligand. The geometry around the
rhodium can be described as a distorted trigonal bipyramid with
(3) Mertens, P. G. N.; Poelman, H.; Ye, X.; Vankelecom, I. F. J.; Jacobs,
P. A.; De Vos, D. E. Catal. Today 2007, 122, 352–360.
(4) (a) Rylander, P. N. Hydrogenation Methods; Academic Press:
London, 1985; p 70. (b) Rylander, P. N. Catalytic Hydrogenation in Organic
Synthesis; Academic Press: London, 1979; p 74.
(5) (a) Nuithitikul, K.; Winterbottom, M. Chem. Eng. Sci. 2004, 59,
5439–5447. (b) Lo´pez-Linares, F.; Agrifoglio, G.; Labrador, A.; Karam,
A. J. Mol. Catal. A: Chem. 2004, 207, 117–122. (c) Kostas, I. D. J.
Organomet. Chem. 2001, 634, 90–98.
(6) (a) Serrano-Ruiz, J. C.; Lo´pez-Cudero, A.; Solla-Gullo´n, J.; Sepu´lveda-
Escribano, A.; Aldaz, A.; Rodriguez-Reinoso, F. J. Catal. 2008, 253, 159–
166. (b) Meric, P.; Yu, K. M. K.; Kong, A. T. S.; Tsang, S. C. J. Catal.
2006, 237, 330–336. (c) Ma¨ki-Arvela, P.; Ha´jek, J.; Salmi, T.; Murzin, D. Y.
Appl. Catal. A: Gen. 2005, 292, 1–49. (d) Zhao, F.; Ikushima, Y.; Chatterjee,
M.; Shirai, M.; Arai, M. Green Chem. 2003, 5, 76–79. (e) Yu, W.; Lui, H.;
Liu, M.; Liu, Z.; Milone, C. React. Funct. Polym. 2000, 44, 21–29, and
references therein.
(7) (a) Farnetti, E.; Nardin, G.; Graziani, M. J. Chem. Soc., Chem.
Commun. 1989, 1264–1265. (b) Visintin, M.; Spogliarich, R.; Kaspar, J.;
Graziani, M. J. Mol. Catal. 1985, 32, 349–351.
(8) (a) Ohkuma, T.; Utsumi, N.; Tsutsumi, K.; Murata, K.; Sandoval,
C.; Noyori, R. J. Am. Chem. Soc. 2006, 128, 8724–8725. (b) Noyori, R.;
Ohkuma, T. Angew. Chem., Int. Ed. 2001, 40, 40–73.
(14) (a) Hou, H.; Rheingold, A. L.; Kubiak, C. P. Organometallics 2005,
24, 231–233. (b) Thomas, J. C.; Peters, J. C. Polyhedron 2004, 23, 489–
497. (c) MacBeth, C. E.; Thomas, J. C.; Betley, T. A.; Peters, J. C. Inorg.
Chem. 2004, 43, 4645–4662. (d) Brown, S. D.; Peters, J. C. J. Am. Chem.
Soc. 2004, 126, 4538–4539. (e) Betley, T. A.; Peters, J. C. J. Am. Chem.
Soc. 2004, 126, 6252–6254. (f) Jenkins, D. M.; Peters, J. C. J. Am. Chem.
Soc. 2003, 125, 11162–11163. (g) Betley, T. A.; Peters, J. C. Inorg. Chem.
2003, 42, 5074–5084. (h) Betley, T. A.; Peters, J. C. J. Am. Chem. Soc.
2003, 125, 10782–10783. (i) Jenkins, D. M.; Betley, T. A.; Peters, J. C.
J. Am. Chem. Soc. 2002, 124, 11238–11239. (j) Brown, S. D.; Betley, T. A.;
Peters, J. C. J. Am. Chem. Soc. 2003, 125, 322–323.
(15) Jenkins, D. M.; Di Bilio, A. J.; Allen, M. J.; Betley, T. A.; Peters,
J. C. J. Am. Chem. Soc. 2002, 124, 15336–15350.
(9) Clarke, M. L.; Roff, G. J. In Handbook of Homogeneous Hydrogena-
tion; de Vries, J. G., Elsevier, C. J., Eds.; Wiley-VCH: Weinheim, 2007;
Vol. 1, p 413.
(10) Li, R.-X.; Wong, N.-B.; Li, X.-J.; Mak, T. C. W.; Yang, Q.-C.;
Tin, K.-C. J. Organomet. Chem. 1998, 571, 223–229.
(16) (a) Turculet, L.; Feldman, J. D.; Tilley, T. D. Organometallics 2004,
23, 2488–2502. (b) Feldman, J. D.; Peters, J. C.; Tilley, T. D. Organome-
tallics 2002, 21, 4050–4064. (c) Feldman, J. D.; Peters, J. C.; Tilley, T. D.
Organometallics 2002, 21, 4065–4075. (d) Peters, J. C.; Feldman, J. D.;
Tilley, T. D. J. Am. Chem. Soc. 1999, 121, 9871–9872.
(11) (a) Hotta, K. J. Mol. Catal. 1985, 29, 105–107. (b) Farnetti, E.;
Kasˇpar, J.; Spogliarich, R.; Graziani, M.; Pesce, M. J. Chem. Soc., Chem.
Commun. 1986, 746–747.
(12) (a) Herna´ndez, M.; Kalck, Ph. J. Mol. Catal. A: Chem. 1997, 116,
131–146. (b) Grosselin, J. M.; Mercier, C.; Allmang, G.; Grass, F.
Organometallics 1991, 10, 2126–2133. (c) Joo´, F. Acc. Chem. Res. 2002,
35, 738–745.
(17) Tejel, C.; Ciriano, M. A.; Jime´nez, S.; Passarelli, V.; Lo´pez, J. A.
Angew. Chem., Int. Ed. 2008, 47, 2093–2096.
(18) de Vries, J. G., Elsevier, C. J., Eds. Handbook of Homogeneous
Hydrogenation; Wiley-VCH: Weinheim, 2007; Vol. 1.
(19) (a) Hierso, J.-C.; Amardeil, R.; Bentabet, E.; Broussier, R.;
Gautheron, B.; Meunier, P.; Kalck, P. Coord. Chem. ReV. 2003, 236, 143–
206. (b) Simpson, M. C.; Cole-Hamilton, D. J. Coord. Chem. ReV. 1996,
155, 163–207.
(13) Chaplin, A. B.; Dyson, P. J. Organometallics 2007, 26, 4357–4360.