Organometallics 2009, 28, 3597–3600 3597
DOI: 10.1021/om900161f
Thermochromic and Aggregation Properties of Bis(phenylisocyano)
Rhodium(I) Diimine Complexes
Larry Tso-Lun Lo, Chi-On Ng, Hua Feng, and Chi-Chiu Ko*
Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon,
Hong Kong, People’s Republic of China
Received February 28, 2009
Summary: A series of bis(phenylisocyano) rhodium(I) diimine
complexes with thermally mediated aggregation properties have
been synthesized, and their photophysical and thermochromic
properties have been studied.
and tuning the aggregation properties of mononuclear Rh
complexes and polypyridyl Rh(I) complexes have been much
less explored.4 With our recent interest in designing readily
tunable polypyridyl isocyano metal complexes,5 we believe
that the incorporation of isocyanide ligands into a Rh(I)
diimine complex would generate square-planar d8 metal
complexes wherein the planarity, physical, aggregation,
and excited-state properties would be readily tuned by alter-
ing the substituent of the isocyanide nitrogen atom. Herein,
we report the synthesis, characterization, and photophysical
properties of a new series of bis(phenylisocyano) Rh(I)
diimine complexes with tunable aggregation properties and
themochromic behavior.
The intriguing excited-state properties as well as the
extraordinary properties associated with the weak metal-
metal interaction of square-planar d8 metal polypyridyl
complexes1 have attracted tremendous attention for decades.
The use of the aggregation properties, controlled through
the elegant design of square-planar polypyridyl Pt(II)
complexes, has revealed many interesting photophysical
properties, which have inspired the development of com-
plexes that serve as chemosensors and molecular devices.2
Despite the great successes in controlling the Rh-Rh dis-
tance by using bridging ligands with different spacers in the
binuclear systems and the unique properties associated with
aggregation of mononuclear Rh(I) complexes,3 controlling
The reaction of [Rh(cod)Cl]2 with AgBF4 in the presence
of 1 equiv of diimine ligand in dichloromethane, followed by
a substitution reaction with a substituted phenylisocyanide,
afforded the BF4- salts of the desired bis(phenyisocyano)
rhodium(I) diimine complexes, [Rh(CNR)2(N-N)]BF4,
in moderate yield (Scheme 1). Complexes 1-5 were char-
1
acterized by H NMR, IR, and ESI-MS and gave satisfac-
*To whom correspondence should be addressed. E-mail: vinccko@
cityu.edu.hk. Fax: (+852)-2788-7406. Tel: (+852)-3442-6958.
(1) (a) Morgan, G. T.; Burstall, F. H. J. Chem. Soc. 1934, 965. (b)
Jennette, K. W.; Gill, J. T.; Sadownick, J. A.; Lippard, S. J. J. Am. Chem.
Soc. 1976, 98, 6159. (c) Miskowski, V. M.; Houlding, V. H. Inorg. Chem.
1989, 28, 1529. (d) Connick, W. B.; Henling, L. M.; Marsh, R. E.; Gray,
H. B. Inorg. Chem. 1996, 35, 6261.
(2) (a) Kunkely, H.; Vogler, A. J. Am. Chem. Soc. 1990, 112, 5625. (b)
Exstrom, C. L.; Sowa, J. R.Jr.; Daws, C. A.; Janzen, D.; Mann, K. R.;
Moore, G. A.; Stewart, F. F. Chem. Mater. 1995, 7, 15. (c) Yam,
V. W.-W.; Tang, R. P.-L.; Wong, K. M.-C.; Ko, C.-C.; Cheung, K.-K.
Inorg. Chem. 2001, 40, 571. (d) Yam, V. W. W.; Wong, K. M.-C.; Zhu,
N. J. Am. Chem. Soc. 2002, 124, 6506. (e) Chakraborty, S.; Wadas, T. J.;
Hester, H.; Flaschenreim, C.; Schmehl, R.; Eisenberg, R. Inorg. Chem.
2005, 44, 6284. (f) Kui, S. C.-F.; Chui, S. Sin-Yin; Che, C.-M.; Zhu, N. J.
Am. Chem. Soc. 2006, 128, 8297.
tory elemental analyses. Recrystallization of these complexes
from slow diffusion of diethyl ether vapor into concentrated
solutions of 1-5 in common organic solvents, such as
acetone, acetonitrile, and THF, gave two types of solids or
crystals with a red or dark green color, similar to other
related square-planar d8 transition metal complexes.3 The
solutions of these two different colored solids or crystals gave
identical 1H NMR and UV-vis absorption spectra. The
X-ray crystal structures6 of the two forms of 1 were also
determined.
(4) Indelli, M. T.; Chiorboli, C.; Scandola, F. Top. Curr. Chem. 2007,
280, 215, and references therein.
(3) (a) Mann, K. R.; Gordon, J. G.II; Gray, H. B. J. Am. Chem. Soc.
1975, 97, 3553. (b) Lewis, N. S.; Mann, K. R.; Gordon, J. G.II; Gray, H.
B. J. Am. Chem. Soc. 1976, 98, 7461. (c) Balch, A. L. J. Am. Chem. Soc.
1976, 98, 8049. (d) Mann, K. R.; Lewis, N. S.; Williams, R. M.; Gray, H.
B. Inorg. Chem. 1978, 17, 828. (e) Miskowski, V. M.; Sigal, I. S.; Mann,
K. R.; Gray, H. B. J. Am. Chem. Soc. 1979, 101, 4383. (f) Rice, S. F.;
Gray, H. B. J. Am. Chem. Soc. 1981, 103, 1593. (g) Fordyce, W. A.;
Brummer, J. G.; Crosby, G. A. J. Am. Chem. Soc. 1981, 103, 7061. (h)
Miskowski, V. M.; Rice, S. F.; Gray, H. B.; Milder, S. J. J. Phys. Chem.
1993, 97, 4277. (i) Fortin, D.; Drouin, M.; Harvey, P. D. J. Am. Chem.
Soc. 1997, 119, 531. (j) Tejel, C.; Ciriano, M. A.; Lopez, J. A.; Lahoz, F.
J.; Oro, L. A. Angew. Chem., Int. Ed. 1998, 37, 1542. (k) Tejel, C.;
Ciriano, M. A.; Oro, L. A. Chem.;Eur. J. 1999, 5, 1131. (l) Heyduk, A.
F.; Macintosh, A. M.; Nocera, D. G. J. Am. Chem. Soc. 1999, 121, 5023.
(m) Bradley, P. M.; Bursten, B. E.; Turro, C. Inorg. Chem. 2001, 40,
1376. (n) Bera, J. K.; Dunbar, K. R. Angew. Chem., Int. Ed. 2002, 41,
4453. (o) Cooke, M. W.; Hanan, G. S.; Loiseau, F.; Campagna, S.;
Watanabe, M.; Tanaka, Y. Angew. Chem., Int. Ed. 2005, 44, 4881. (p)
Tran, N. T.; Stork, J. R.; Pham, D.; Chancellor, C. J.; Olmstead, M. M.;
Fettinger, J. C.; Balch, A. L. Inorg. Chem. 2007, 46, 7998. (q) Tran, N. T.;
Stork, J. R.; Pham, D.; Olmstead, M. M.; Fettinger, J. C.; Balch, A. L.
Chem. Commun. 2006, 1130.
(5) Ng, C.-O.; Lo, L. T.-L.; Ng, S.-M.; Ko, C.-C.; Zhu, N. Inorg.
Chem. 2008, 47, 7447.
(6) Crystal data for green form of 1: [C32H35BF4N4O0.5Rh] (1 1/
3
˚
2Et2O), Mw = 673.36, monoclinic, C2/c (No. 15), a = 19.0965(4) A, b =
˚
˚
20.8077(4) A, c = 15.4552(3) A, R = 90°, β = 96.555(2)°, γ = 90°, V =
3
6101.0(2) A , Z = 8, Dc = 1.466 g cm-3, μ(Cu-KR) = 4.993 mm-1
,
˚
6424 reflections collected, 3581 were unique (Rint = 0.0419) and 2681
were observed with I g 2σ(I) in the ranges of -19 e h e 20, -22 e k e 21,
-15 e l e 15 with 2θmax equal to 55.00°. F(000) = 2760, T = 173(2) K,
R1 = 0.0468 and wR2 = 0.1051 with a GOF on F2 = 0.996. Data/
restraints/parameters: 6424/0/391. Crystal data for red form of 1:
[C33H36BF4N4ORh] (1 (CH3)2CO), Mw = 694.38, monoclinic, P21/c
˚
3
˚
˚
(No. 14), a = 14.7171(5) A, b = 13.9287(4) A, c = 16.6506(5) A, R =
3
˚
90°, β = 109.209(3)°, γ = 90°, V = 3223.18(17) A , Z = 4, Dc
=
1.431 g cm-3, μ(Cu-KR) = 4.756 mm-1, 9263 reflections collected,
5498 were unique (Rint = 0.0193) and 4669 were observed with I g 2σ(I)
in the ranges -17 e h e 14, -16 e k e 16, -19 e l e 19 with 2θmax equal
to 67.48°. F(000) = 1424, T = 293(2) K, R1 = 0.0355 and wR2 = 0.0942
with a GOF on F2 = 1.045. Data/restraints/parameters: 9263/0/405. For
crystallographic data in CIF and perspective drawings of these struc-
tures, see the Supporting Information.
r
2009 American Chemical Society
Published on Web 05/19/2009
pubs.acs.org/Organometallics