A. J. Duplantier et al. / Bioorg. Med. Chem. Lett. 19 (2009) 2524–2529
2529
Table 5
Pharmacokinetic data in rats.
Schmidt for 5-HT2A data, Elaine Tseng for exposure data for com-
pound 40, Dianne Wong for generating B/P data for compound
17, and our ADME technology group for microsomal clearance
data.
Compounds
CLp (mL/min/kg)a
102
18.1
Vdss (L/kg)
T1/2 (h)
%Fb
38
44
3.2
4.7
0.8
3.8
64
100
References and notes
a
1 mg/kg iv dose.
F based on oral dose of 10 mg/kg 38 and 3 mg/kg 44.
b
1. Pin, J.-P.; Galvez, T.; Prezeau, L. Pharmacol. Ther. 2003, 98, 325.
2. Poisik, O.; Raju, D. V.; Verreault, M.; Rodriguez, A.; Abeniyi, O. A.; Conn, P. J.;
Smith, Y. Neuropharmacology 2005, 49, 57.
3. Kew, J. N. C.; Kemp, J. A. Psychopharmacology 2005, 179, 4.
4. Grillon, C.; Cordova, J.; Levine, L. R. Psychopharmacology 2003, 168, 446.
5. Rorick-Kehn, L. M.; Johnson, B. G.; Knitowski, K. M.; Salhoff, C. R.; Witkin, J. M.;
Perry, K. W.; Griffey, K. I.; Tizzano, J. P.; Monn, J. A.; McKinzie, D. L.; Schoepp, D.
D. Psychopharmacology 2007, 193, 121.
6. Marek, G. J. Curr. Opin. Pharmacol. 2004, 4, 18.
7. Linden, A.-M.; Schoepp, D. D. Drug Discovery Today: Therapeutic Strategies 2006,
3(4), 507.
8. Patil, S. T.; Zhang, L.; Martenyi, F.; Lowe, S. L.; Jackson, K. A.; Andreev, B. V.;
Avedisova, A. S.; Bardenstein, L. M.; Gurovich, I. Y.; Morozova, M. A.; Mosolov, S.
N.; Neznanov, N. G.; Reznik, A. M.; Smulevich, A. B.; Tochilov, V. A.; Johnson, B.
G.; Monn, J. A.; Schoepp, D. D. Nat. Med. 2007, 13, 1102.
9. For a review, see: Rudd, M. T.; McCauley, J. A. Curr. Top. Med. Chem. 2005, 5, 869.
10. Zhang, L.; Rogers, B. N.; Duplantier, A. J.; McHardy, S. F.; Efremov, I.; Berke, H.;
Qian, W.; Zhang, A. Q.; Maklad, N.; Candler, J.; Doran, A. C.; Lazzaro, J. T., Jr.;
Ganong, A. H. Bioorg. Med. Chem. Lett. 2008, 18, 5493.
([brain]free), the unbound fractions in mouse brain (Fub) were mea-
sured. The [brain]free of 38 (2 h post dose) and 40 (0.5 h post dose)
at the MED were calculated to be 34 and 66 nM, respectively, sim-
ilar to their in vitro EC50 values (30 and 70 nM, respectively). How-
ever, for compound 40 it is unclear how much of its activity in the
locomotor assay is due to 5-HT2A, or whether 5-HT2A activity could
act synergistically with mGluR2 in this model.25 Compound 44 was
not active at doses up to 32 mg/kg, likely reflecting the larger hur-
dle of covering a less potent EC50 of 380 nM. Finally, compounds 38
and 44 were both shown to have good oral bioavailability in rats
(Table 5); and 44 had low plasma CL and a moderate half-life
(T1/2 = 3.8 h). Compound 38, however, appeared to have high clear-
ance (CL = 102 mL/min/kg, undefined explanation), suggestive of
11. Recasens, M.; Guiramand, J.; Aimar, R.; Abdulkarium, A.; Barbanel, G. Curr. Drug
Targets 2007, 8, 651.
extrahepatic metabolism, and
a moderate volume (4.7 L/kg),
12. Gjoni, T.; Urwyler, S. Neuropharmacology 2008, 55, 1293.
13. (a) Goodnow, R. A., Jr.; Gillespie, P. Prog. Med. Chem. 2007, 45, 1; (b) Wunberg,
T.; Hendrix, M.; Hillisch, A.; Lobell, M.; Meier, H.; Schmeck, C.; Wild, H.; Hinzen,
B. Drug Discovery Today 2006, 11, 175; (c) Keseru, G.; Makara, G. Drug Discovery
Today 2006, 11, 741; (d) Alanine, A.; Nettekoven, M.; Roberts, E.; Thomas, A. W.
Comb. Chem. High Throughput Screen. 2003, 6, 51.
resulting in a short half-life (0.8 h). It is noteworthy that in the
presence of rat liver microsomes, compound 38 had a relatively
high in vitro CL of 51 mL/min/kg.
In summary, we have identified a promising new series of
mGluR2 PAMs, characterized by high brain penetration and good
ligand efficiency. This work highlighted the importance of a thor-
ough hit assessment process as part of the hit-to-lead paradigm.
Judicious library design allowed to reach a decision making point
on this series in one iteration of synthesis. Modification of the alk-
ylether moiety of 17 led to a series of biaryl analogs with lower hu-
man microsomal CL and improved physical properties (38–40).
Efforts to introduce polar functionality and/or an ionizable center
were successful in that they improved solubility, reduced cLogP,
provided a salt handle and lowered human microsomal CL, but
these compounds had generally less potent mGluR2 PAM activity.
Compound 38 was found to be active in an in vivo methamphet-
amine-induced hyperlocomotor model at a free brain exposure
nearly equal to its in vitro mGluR2 PAM EC50 of 30 nM, but the total
14. MS-based quantification of the basal/apical transfer rate of a test compound at
2 lM across contiguous monolayers from MDCK (Madin Darby Canine Kidney)
cells.
15. Ratio from the MS-based quantification of apical/basal and basal/apical
transfer rates of a test compound at 2
from MDR1-transfected MDCK cells.
lM across contiguous monolayers
16. Hopkins, A. L.; Groom, C. R.; Alexander, A. Drug Discovery Today 2004, 9, 430.
17. Ligand efficiency is calculated based on binding affinity. Since the mGluR2
assay used is
a functional assay and the EC50 value depends on the
concentration of glutamate present in the assay, the precise assessment of
the ligand efficiency based on this assay was not possible. At the same time,
comparison of LE profiles of multiple chemotypes using the same mGluR2
assay provided
a valuable perspective when assessing lead generation
potential of different chemical series.
18. Hitchcock, S. A. Curr. Opin. Chem. Biol. 2008, 12, 318.
19. (a) Patel, Y.; Gillet, V. J.; Howe, T.; Pastor, J.; Oyarzabal, J.; Willett, P. J. Med.
Chem. 2008, 51, 7552; (b) Dill, K. A. J. Biol. Chem. 1997, 272, 701.
20. Feng, B.; Mills, J. B.; Davidson, R. E.; Mireles, R. J.; Janiszewski, J. S.; Troutman,
M. D.; de Morais, S. M. Drug Metab. Dispos. 2008, 36, 268.
plasma exposure required to achieve this was high (2.3 lM) due to
21. Fluorescence-based measurement of CYP inhibition by incubating the
high protein binding. We conclude that future endeavors will have
to address the high lipophilicity seemingly required for mGluR2
PAM binding in the transmembrane domain versus the reduced
lipophilicity necessary for lower protein binding.
recombinant CYP (Cytochrome P450) with
corresponding fluorescent probe at 3 M.
22. Scintillation proximity assay measuring inhibition of 3H-dofetilide binding to
membranes from hERG-expressing HEK cells at 10 M.
a test compound and the
l
l
23. In efforts to obtain analogs in solid form, we compared the MPs of small
alkoxyphenyl ethers (oils) to benzylphenyl ether (ꢀ40 °C), phenyl ether
(ꢀ28 °C) and biphenyl (ꢀ70 °C).
Acknowledgments
24. (a) Hirota, S.; Kawashima, N.; Chaki, S.; Okuyama, S. CNS Drug Rev. 2003, 9(4),
375; (b) Satow, A.; Maehara, S.; Ise, S.; Hikichi, H.; Fukushima, M.; Suzuki, G.;
Kimura, T.; Tanaka, T.; Ito, S.; Kawamoto, H.; Ohta, H. J. Pharmacol. Exp. Ther.
2008, 326, 577.
The authors thank Bruce Posner and Csilla Csiki Jorgensen for
the HTS work, Jon Bordner for the single crystal X-ray structure
elucidation of compound 3, Joel Schachter and Diane Lang for con-
structing cells and Professor Shigetada Nakanishi of Kyoto Univer-
sity for providing cDNA. We also thank Rebecca O’Connor and Anne
25. Gonzalez-Maeso, J.; Ang, R. L.; Yuen, T.; Chan, P.; Weisstaub, N. V.; Lopez-
Gimenez, J. F.; Zhou, M.; Okawa, Y.; Callado, L. F.; Milligan, G.; Gingrich, J. A.;
Filizola, M.; Meana, J. J.; Sealfon, S. C. Nat. Lett. 2008, 1.