single crystals suitable for X-ray crystallography. Isolated yield
2.16 g, 75%.
4 C. Eaborn, M. S. Hill, P. B. Hitchcock and J. D. Smith, J. Chem. Soc.
Chem. Commun., 2000, 691.
5 (a) P. B. Hitchcock, Q. G. Huang, M. F. Lappert and M. S. Zhou,
Dalton Trans., 2005, 2988; (b) P. B. Hitchcock, M. F. Lappert and X.
H. Wei, J. Organomet. Chem., 2004, 689, 1342; (c) F. Antolini, P. B.
Hitchcock, M. F. Lappert and X. H. Wei, Organometallics, 2003, 22,
2505.
6 L. J. Bowman, K. Izod, W. Clegg, R. W. Harrington, J. D. Smith and
C. Eaborn, Dalton Trans., 2006, 502.
7 (a) L. J. Bowman, K. Izod, W. Clegg and R. W. Harrington,
Organometallics, 2006, 25, 2999; (b) L. J. Bowman, K. Izod, W. Clegg
and R. W. Harrington, J. Organomet. Chem., 2007, 692, 806; (c) L. J.
Bowman, K. Izod, W. Clegg and R. W. Harrington, Organometallics,
2007, 26, 2646.
1H NMR (d8-THF, 25 ◦C): d -0.01 (s, 12H, SiMe2), 0.02 (s, 18H,
SiMe3), 0.44 (s, 4H, CH2), 1.16 (d, JPH = 9.2 Hz, 12H, PMe2),
1
1.77 (m, 6H, THF), 3.61 (m, 6H, THF). 13C{ H} NMR (d8-THF,
25 ◦C): d 4.1 (d, JPC = 3.8 Hz, SiMe2), 7.1 (d, JPC = 3.8 Hz,
SiMe3), 16.4 (CH2), 22.9 (d, JPC = 34.5 Hz, PMe2), 25.5 (THF),
67.3 (THF). 11B{ H} NMR (d8-THF, 25 ◦C): d -30.4 (d, JPB
=
1
◦
93 Hz). 31P{ H} NMR (d8-toluene, 25 C): d -5.2 (q, JPB = 93 Hz).
1
Crystal structure determinations of 4, 5, rac-6 and 10
8 (a) K. Izod, W. McFarlane, B. V. Tyson, W. Clegg and R. W. Harrington,
Chem. Commun., 2004, 570; (b) K. Izod, C. Wills, W. Clegg and R. W.
Harrington, Organometallics, 2006, 25, 38; (c) K. Izod, C. Wills, W.
Clegg and R. W. Harrington, Organometallics, 2006, 25, 5326; (d) K.
Izod, C. Wills, W. Clegg and R. W. Harrington, Inorg. Chem., 2007,
46, 4320; (e) K. Izod, C. Wills, W. Clegg and R. W. Harrington,
Organometallics, 2007, 26, 2861; (f) K. Izod, C. Wills, W. Clegg and
R. W. Harrington, Dalton Trans., 2007, 3669; (g) K. Izod, C. Wills, W.
Clegg and R. W. Harrington, J. Organomet. Chem., 2007, 692, 5060.
9 K. Narasaka, N. Saito, Y. Hayashi and H. Ichida, Chem. Lett., 1990,
8, 1411.
10 A. Inoue, J. Kondo, H. Shinokubo and K. Oshima, Chem. Eur. J., 2002,
8, 1370.
11 (a) B. Mariniec, E. Walczuk-Gus´ciora and C. Pietraszuk, Catal. Lett.,
1998, 55, 125; (b) B. Mariniec, I. Kownacki and D. Chadyniak, Inorg.
Chem. Comm., 1999, 2, 581.
12 P. Pawluc, B. Mariniec, G. Hreczycho, B. Gaczewska and Y. Itami, J.
Org. Chem., 2005, 70, 370.
13 C. Eaborn, P. B. Hitchcock, J. D. Smith and A. C. Sullivan, J. Chem.
Soc. Chem. Commun., 1983, 1390.
14 K. Izod, W. McFarlane and B. V. Tyson, Eur. J. Org. Chem., 2004, 1043.
15 F. Dornhaus, M. Bolte, H.-W. Lerner and M. Wagner, Eur. J. Inorg.
Chem., 2006, 5138.
16 W. Clegg, K. Izod, W. McFarlane and P. O’Shaughnessy,
Organometallics, 1998, 17, 5231.
Measurements were made at 180 K (4 and 5) or 150 K (rac-6
and 10) on Nonius KappaCCD (4 and 5), Oxford Diffraction
Gemini A Ultra (rac-6), and Bruker SMART diffractometers (10)
using graphite-monochromated MoKa radiation (l = 0.71073 A).
˚
Cell parameters were refined from the observed positions of
all strong reflections. Intensities were corrected semi-empirically
for absorption, based on symmetry-equivalent and repeated
reflections. The structures were solved by direct methods and
refined on F2 values for all unique data; Table 1 gives further
details. All non-hydrogen atoms were refined anisotropically, and
C-bound H atoms were constrained with a riding model, while
B-bound H atoms were freely refined; U(H) was set at 1.2 (1.5
for methyl groups) times Ueq for the parent C atom. Disorder was
resolved and successfully modelled for the THF molecule in 4, two
of the three THF molecules in 5 and one of the two THF molecules
in 10. Programs were Nonius COLLECT and EvalCCD, Oxford
Diffraction CrysAlisPro, Bruker SMART and SAINT for data
collection and processing, and SHELXTL for structure solution,
refinement, and molecular graphics.24
17 K. Izod, W. McFarlane, B. V. Tyson, W. Clegg, R. W. Harrington and
S. T. Liddle, Organometallics, 2003, 22, 3684.
18 K. Izod, W. McFarlane, B. V. Tyson, W. Clegg and R. W. Harrington,
J. Chem. Soc. Dalton Trans., 2004, 4074.
Acknowledgements
19 J. D. Smith, Adv. Organomet. Chem., 1998, 43, 267.
20 C. Eaborn, M. S. Hill, P. B. Hitchcock, J. D. Smith, S. Zhang and T.
Ganicz, Organometallics, 1999, 18, 2342.
The authors are grateful to the Royal Society and the EPSRC for
support.
21 C. Eaborn, P. B. Hitchcock and P. D. Lickiss, J. Organomet. Chem.,
1984, 269, 235.
22 H. Schmidbaur, E. Weiss and G. Mu¨ller, Synth. React. Inorg. Met.-Org.
Chem., 1985, 15, 401.
23 (a) E. Weiss and G. Sauermann, Angew. Chem. Int. Ed. Engl., 1968,
7, 133; (b) E. Weiss and G. Sauermann, Chem. Ber., 1970, 103, 265;
(c) C. Eaborn, P. B. Hitchcock, K. Izod, A. J. Jaggar and J. D. Smith,
Organometallics, 1994, 13, 753.
24 (a) COLLECT, Nonius BV, Delft, The Netherlands, 1998; (b) CrysAl-
isPro, Oxford Diffraction, Abingdon, UK; (c) SMART and SAINT,
Bruker AXS Inc., Madison, Wisconsin, USA, 2004 and 1997; (d) G.
M. Sheldrick, Acta Crystallogr. Sect. A, 2008, 64, 112.
References
1 (a) For reviews see: C. Eaborn and J. D. Smith, J. Chem. Soc. Dalton
Trans., 2001, 1541; (b) C. Eaborn, K. Izod and J. D. Smith, J.
Organomet. Chem., 1995, 500, 89; (c) C. Eaborn and J. D. Smith, Coord.
Chem. Rev., 1996, 154, 125.
2 W. Clegg, C. Eaborn, K. Izod, P. O’Shaughnessy and J. D. Smith,
Angew. Chem. Int. Ed. Engl., 1997, 36, 2815.
3 K. Izod, S. T. Liddle and W. Clegg, J. Am. Chem. Soc., 2003, 125,
7534.
This journal is
The Royal Society of Chemistry 2009
Dalton Trans., 2009, 3340–3347 | 3347
©