E
G. Sun et al.
Letter
Synlett
(15) Adhikari, S.; Li, X.; Zhu, J. J. Carbohydr. Chem. 2013, 32, 336.
(16) Dutta, S.; Sarkar, S.; Gupta, S. J.; Sen, A. K. Tetrahedron Lett.
2013, 54, 865.
(17) Chen, X.; Shen, D.; Wang, Q.; Yang, Y.; Yu, B. Chem. Commun.
2015, 51, 13957.
(18) Hotha, S.; Kashyap, S. J. Am. Chem. Soc. 2006, 128, 9620.
(19) Imagawa, H.; Kinoshita, A.; Fukuyama, T.; Yamamoto, H.;
Nishizawa, M. Tetrahedron Lett. 2006, 47, 4729.
(20) Sureshkumar, G.; Hotha, S. Chem. Commun. 2008, 36, 4282.
(21) Mamidyala, S. K.; Finn, M. G. J. Org. Chem. 2009, 74, 8417.
(22) Vidadala, S. R.; Thadke, S. A.; Hotha, S. J. Org. Chem. 2009, 74,
9233.
(47) Rajaganesh, R.; MohanDas, T. Carbohydr. Res. 2012, 357, 139.
(48) Ashokkumar, V.; Siva, A. Org. Biomol. Chem. 2017, 15, 2551.
(49) Liu, W.; Zheng, Y.; Kong, X.; Heinis, C.; Zhao, Y.; Wu, C. Angew.
Chem. Int. Ed. 2017, 56, 4458.
(50) Dash, A. K.; Madhubabu, T.; Yousuf, S. K.; Raina, S.; Mukherjee,
D. Carbohyd. Res. 2017, 438, 1.
(51) Bellucci, M. C.; Ghilardi, A.; Volonterio, A. Org. Biomol. Chem.
2011, 9, 8379.
(52) Mitachi, K.; Mohan, P.; Siricilla, S.; Kurosu, M. Chemistry 2014,
20, 4554.
(53) Venukumar, P.; Sudharani, C.; Sridhar, P. R. Chem. Commun.
2014, 50, 2218.
(23) Vidadala, S. R.; Hotha, S. Chem. Commun. 2009, 18, 2505.
(24) Kayastha, A. K.; Hotha, S. Tetrahedron Lett. 2010, 51, 40, 5269.
(25) Kayastha, A. K.; Hotha, S. Chem. Commun. 2012, 48, 7161.
(26) Vidadala, S. R.; Thadke, S. A.; Hotha, S.; Kashyap, S. J. Carbohydr.
Chem. 2012, 31, 241.
(27) Thadke, S. A.; Neralkar, M.; Hotha, S. Carbohydr. Res. 2016, 430,
16.
(28) Sureshkumar, G.; Hotha, S. Tetrahedron Lett. 2007, 48, 6564.
(29) Li, J.; Zhang, X.; Zhang, M.; Xiu, H.; He, H. Carbohydr. Polym.
2015, 117, 917.
(30) Zhang, L.; Yu, H.; Wang, P.; Li, Y. Bioresour. Technol. 2014, 151,
355.
(31) Zhou, J.; Chen, H.; Shan, J.; Li, J.; Yang, G.; Chen, X.; Xin, K.;
Zhang, J.; Tang, J. J. Carbohydr. Chem. 2014, 33, 313.
(32) Cornil, J.; Guerinot, A.; Reymond, S.; Cossy, J. J. Org. Chem. 2013,
78, 10273.
(33) Shiva Kumar, K.; Siddi Ramulu, M.; Rajesham, B.; Kumar, N. P.;
Voora, V.; Kancha, R. K. Org. Biomol. Chem. 2017, 15, 4468.
(34) Shi, J. L.; Zhang, J. C.; Wang, B. Q.; Hu, P.; Zhao, K. Q.; Shi, Z. J.
Org. Lett. 2016, 18, 1238.
(35) Zhao, J.; Xu, Z.; Oniwa, K.; Asao, N.; Yamamoto, Y.; Jin, T. Angew.
Chem. Int. Ed. 2016, 55, 259.
(36) Ma, L.; Li, W.; Xi, H.; Bai, X.; Ma, E.; Yan, X.; Li, Z. Angew. Chem.
Int. Ed. 2016, 55, 10410.
(37) Jang, S. S.; Youn, S. W. Org. Biomol. Chem. 2016, 14, 2200.
(38) Zhu, Y.; Li, C.; Zhang, J.; She, M.; Sun, W.; Wan, K.; Wang, Y.; Yin,
B.; Liu, P.; Li, J. Org. Lett. 2015, 17, 3872.
(39) Ruengsangtongkul, S.; Taprasert, P.; Sirion, U.; Jaratjaroonphong,
J. Org. Biomol. Chem. 2016, 14, 8493.
(40) Qiu, S.; Zhang, W.; Sun, G.; Wang, Z.; Zhang, J. ChemistrySelect
2016, 1, 4840.
(41) Qiu, S.; Sun, G.; Ding, Z.; Chen, H.; Zhang, J. Synlett 2017, 28,
2024.
(42) Garcia, B. A.; Gin, D. Y. J. Am. Chem. Soc. 2000, 122, 4269.
(43) Mensah, E. A.; Azzarelli, J. M.; Nguyen, H. M. J. Org. Chem. 2009,
74, 1650.
(44) Uchiro, H.; Kurusu, N.; Mukaiyama, T. Isr. J. Chem. 1997, 37, 87.
(45) Senthilkumar, S.; Prasad, S. S.; Kumar, P. S.; Baskaran, S. Chem.
Commun. 2014, 50, 1549.
(46) Tatina, M.; Yousuf, S. K.; Mukherjee, D. Org. Biomol. Chem. 2012,
10, 5357.
(54) Yadav, J. S.; Yadav, N. N.; Gupta, M. K.; Srivastava, N.; Subba
Reddy, B. V. Monatsh. Chem. 2014, 145, 517.
(55) Typical Experimental Procedure
Typically, to a mixture of 2,3,4,6-tetra-O-benzyl-α-D-glucopyra-
noside (1a, 0.1 mmol, 58 mg) and methyl 2,3,4-tri-O-benzoyl-α-
D-glucopyranoside (2a, 0.05 mmol, 25 mg) in a round-bottom
flask (5 mL) under nitrogen atmosphere. The FeCl3 (10 mg, 0.06
mmol) catalyst and anhydrous CH3CN solvent (6 mL) was added
to another round-bottom flask. Take the solution of FeCl3(1.5
mL) to the former round-bottom flask, and the reaction was
stirred at 60 °C for 15 h. After completion of the reaction (moni-
tored by TLC), the organic phase was condensed under vacuum
to get crude product, which was purified by silica gel column
chromatography (PE/EtOAc = 6:1) to get 3a in 83% yield. All new
compounds were characterized by 1H NMR,13C NMR, and MS.
Spectral and analytical data were in good agreement with the
desired structures.
(56) Selected Spectral Data – Compound 3a
Colorless oil, α-anomer:1H NMR (500 MHz, CDCl3): δ = 8.00 (dd,
J = 8.3, 1.2 Hz, 2 H), 7.97 (dd, J = 8.3, 1.2 Hz, 2 H), 7.91–7.85 (m, 2
H), 7.55–7.49 (m, 2 H), 7.46–7.28 (m, 24 H), 7.22 (m, 1 H), 7.15
(dd, J = 7.6, 1.7 Hz, 2 H), 6.16 (t, J = 9.4 Hz, 1 H), 5.55 (t, J = 9.9 Hz,
1 H), 5.24 (q, J = 3.5 Hz, 2 H), 4.93 (d, J = 11.0 Hz, 1 H), 4.84 (d, J =
11.0 Hz, 1 H), 4.80 (d, J = 11.0 Hz, 1 H), 4.78 (d, J = 12.5 Hz, 1 H),
4.76 (d, J = 3.5 Hz, 1 H), 4.65 (d, J = 12.2 Hz, 1 H), 4.56 (d, J = 12.1
Hz, 1 H), 4.47 (d, J = 11.0 Hz, 1 H), 4.40 (d, J = 12.1 Hz, 1 H), 4.36–
4.31 (m, 1 H), 3.98 (t, J = 9.3 Hz, 1 H), 3.90–3.84 (m, 2 H), 3.67–
3.62 (m, 2 H), 3.60 (dd, J = 11.0, 2.1 Hz, 1 H), 3.56 (dd, J = 9.7, 3.5
Hz, 1 H), 3.52 (dd, J = 10.7, 1.9 Hz, 1 H), 3.46 (s, 3 H).
β-Anomer: 1H NMR (500 MHz, CDCl3): δ = 8.00–7.85 (m, 6 H),
7.52–7.12 (m, 29 H), 6.17 (t, J =9.8 Hz, 1 H), 5.47 (t, J =9.9 Hz, 1
H), 5.25 (dd, J =10.2, 3.6 Hz, 1 H), 5.20 (d, J =3.6 Hz, 1 H), 5.05 (d,
J =10.8 Hz, 1 H), 4.91 (d, J =10.9 Hz, 1 H), 4.80 (d, J =10.8 Hz, 1 H),
4.76 (d, J = 10.9 Hz, 1 H), 4.68 (d, J =10.9 Hz, 1 H), 4.53 (d, J =11.5
Hz, 1 H), 4.50 (d, J =11.6 Hz, 1 H), 4.47 (d, J =7.8 Hz, 1 H), 4.43 (d,
J =12.2 Hz, 1 H), 4.41–4.34 (m, 1 H), 4.12 (dd, J =10.8, 2.0 Hz, 1
H), 3.81 (dd, J = 10.9, 7.6 Hz, 1 H), 3.66–3.63 (m, 2 H), 3.61 (d, J =
6.0 Hz, 1 H), 3.58 (d, J = 9.1 Hz, 1 H), 3.46–3.43 (m, 2 H), 3.37 (s,
3 H). ESI-MS: m/z calcd for C62H60O14 Na [M + Na+]: 1051.39;
found: 1051.25.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2018, 29, A–E