2568
O. B. Locos et al. / Tetrahedron Letters 50 (2009) 2566–2569
(d) Langa, F.; Gomez-Escalonilla, M. J.; de la Cruz, P. J. Porphyrins
CH
3
Phthalocyanines 2007, 11, 348.
5. For recent examples of porphyrin functionalization, see: (a) Senge, M. O.;
Richter, J. J. J. Porphyrins Phthalocyanines 2004, 8, 934; (b) Sugiura, K.-i.; Kato,
A.; Iwasaki, K.; Miyasaka, H.; Yamashita, M.; Hino, S.; Arnold, D. P. Chem.
Commun. 2007, 2046; (c) Esdaile, L. J.; Jensen, P.; McMurtrie, J. C.; Arnold, D. P.
Angew. Chem., Int. Ed. 2007, 46, 2090; (d) Atefi, F.; Locos, O. B.; Senge, M. O.;
Arnold, D. P. J. Porphyrins Phthalocyanines 2006, 10, 176; (e) Baba, H.; Chen, J.;
Shinokubo, H.; Osuka, A. Chem. Eur. J. 2008, 14, 4256; (f) Hori, T.; Peng, X.;
Aratani, N.; Takagi, A.; Matsumoto, T.; Kawai, T.; Yoon, Z. S.; Yoon, M.-C.; Yang,
J.; Kim, D.; Osuka, A. Chem. Eur. J. 2008, 14, 582; (g) Senge, M. O.; Fazekas, M.;
Notaras, E. G. A.; Blau, W. J.; Zawadzka, M.; Locos, O. B.; Ni Mhuircheartaigh, E.
M. Adv. Mater. 2007, 19, 2737; (h) Senge, M. O. Acc. Chem. Res. 2005, 38, 733; (i)
Horn, S.; Sergeeva, N. S.; Senge, M. O. J. Org. Chem. 2007, 72, 5414; (j) Horn, S.;
Senge, M. O. Eur. J. Org. Chem. 2008, 4881; (k) Hao, E. H.; Fronczek, F. R.; Vicente,
M. G. H. Chem. Commun. 2006, 4900; (l) Fan, D. Z.; Taniguchi, M.; Lindsey, J. S. J.
Org. Chem. 2007, 72, 5350; (m) Mori, G.; Shinokubo, H.; Osuka, A. Tetrahedron
Lett. 2008, 49, 2170; (n) Maes, W.; Ngo, T. H.; Vanderhaeghen, J.; Dehaen, W.
Org. Lett. 2007, 9, 3165.
6. (a) Castro, A. M. M. Chem. Rev. 2004, 104, 2939; (b) Sydnes, L. K. Chem. Rev.
2003, 103, 1133; (c) Mikami, K.; Shimizu, M. Chem. Rev. 1992, 92, 1021; (d)
Nakai, T.; Mikami, K. Chem. Rev. 1986, 86, 885; (e) Smadja, W. Chem. Rev. 1983,
83, 263; (f) Taylor, D. R. Chem. Rev. 1967, 67, 317; (g) Pasto, D. J. Tetrahedron
1984, 40, 2805; (h) Krause, N.; Hoffmann-Roeder, A. Tetrahedron 2004, 60,
11671; (i) Hoffmann-Roder, A.; Krause, N. Angew. Chem., Int. Ed. 2002, 41, 2933.
7. (a) Ma, S.; Hou, H.; Zhao, S.; Wang, G. Synthesis 2002, 1643; (b) Hoffmann-
Roeder, A.; Krause, N. Angew. Chem., Int. Ed. 2004, 43, 1196.
Ph
Ph
N
N
N
N
N
N
N
N
Zn
Zn
CH3
Ph
Ph
MeLi
MeI
THF
-30 ºC
Ph
Ph
Zn7 88%
n-BuLi
THF
0 ºC
Ph
Ph
N
N
N
N
NH
N
N
Zn
Ph
CH3
Ph
HN
Ph
Zn9
Ph
H27 25%
8. (a) Blake, I. M.; Rees, L. H.; Claridge, T. D. W.; Anderson, H. L. Angew. Chem., Int.
Ed. 2000, 39, 1818; (b) Piet, J. J.; Taylor, P. N.; Anderson, H. L.; Osuka, A.;
Warman, J. M. J. Am. Chem. Soc. 2000, 122, 1749; (c) Beljonne, D.; O’Keefe, G. E.;
Hamer, P. J.; Friend, R. H.; Anderson, H. L.; Bredas, J. L. J. Chem. Phys. 1997, 106,
9439.
Scheme 3.
9. (a) Nagaoka, Y.; Tomioka, K. J. Org. Chem. 1998, 63, 6428; (b) Nagaoka, Y.; Inoue,
H.; Tomioka, K. Phosphorus, Sulfur Silicon Relat. Elem. 2002, 177, 1843; (c)
Wadsworth, W. S., Jr.; Emmons, W. D. J. Am. Chem. Soc. 1961, 83, 1733; (d)
Fillion, H.; Refouvelet, B.; Pera, M. H.; Dufaud, V.; Luche, J. L. Synth. Commun.
1989, 19, 3343; (e) Fillion, H.; Hseine, A.; Pera, M. H. Synth. Commun. 1987, 17,
929.
10. (a) Runge, S.; Senge, M. O. Tetrahedron 1999, 55, 10375; (b) Dahms, K.; Senge,
M. O.; Bakar, M. B. Eur. J. Org. Chem. 2007, 3833; (c) Senge, M. O.; Hatscher, S. S.;
Wiehe, A.; Dahms, K.; Kelling, A. J. Am. Chem. Soc. 2004, 126, 13634; (d)
Takanami, T.; Wakita, A.; Sawaizumi, A.; Iso, K.; Onodera, H.; Suda, K. Org. Lett.
2008, 10, 685.
11. Inoue, H.; Tsubouchi, H.; Nagaoka, Y.; Tomioka, K. Tetrahedron 2002, 58, 83.
12. (a) Tonogaki, K.; Itami, K.; Yoshida, J. Org. Lett. 2006, 8, 1419; (b) Tonogaki, K.;
Itami, K.; Yoshida, J.-I. J. Am. Chem. Soc. 2006, 128, 1464.
13. Bustelo, E.; Guerot, C.; Hercouet, A.; Carboni, B.; Toupet, L.; Dixneuf, P. H. J. Am.
Chem. Soc. 2005, 127, 11582.
subsequent trapping of the anion intermediate with MeI. However,
only starting material and the demetallated H27 were retrieved
from the reaction mixture after column chromatography when
subjecting 2-propynylporphyrin Zn7 to 2 equiv of n-BuLi in THF
at 0 °C. This preliminary investigation is ongoing in our laboratory
with NiII derivatives.
In conclusion, for the first time, unsubstituted allenes and prop-
argyl substituents have been attached to the porphyrin periphery
by Suzuki coupling and trapping of an alkyne anion with MeI.
The phenomenon of allene rearrangement on the porphyrin
periphery is still being investigated. However, as allenes are partic-
ularly reactive functional groups, especially towards metal cataly-
sis,7,17,18 we have also begun exploring their reactivity on the
macrocycle.
14. (a) Ni8 was synthesised in the optimum yield using the following procedure:
To a 20 cm3 Schlenk tube, Ni5 (50 mg), PdCl2(dppe) (15 mol %, 10 mg) and
K2CO3 (107 mg) were added and dried under vacuum before the flask was
charged with argon. Dry THF (10 cm3) was added and the mixture was
degassed via three freeze-pump-thaw cycles. Allenylboronic acid pinacol ester
(140 lL, 10-fold excess) was subsequently added, and the flask was sealed and
Acknowledgements
heated to 80 °C overnight. The progress of the reaction was monitored by TLC
using CH2Cl2/n-hexane (1:2) as eluent. Upon complete consumption of the
starting material, the solvent was removed in vacuo and the residue was
chromatographed on silica gel using CH2Cl2/n-hexane (1:2). The first fraction
collected was Ni8 (24 mg, 50%). Analytical data: mp: >300 °C; 1H NMR
(400 MHz, CDCl3): 9.46 (d, 3J = 5.0 Hz, 2H, b-H), 8.80 (d, 3J = 5.0 Hz, 2H, b-H),
8.69 (d, 3J = 4.90 Hz, 2H, b-H), 8.67 (d, 3J = 4.90 Hz, 2H, b-H), 8.31 (t, 4J = 6.8 Hz,
1H, allene–CH), 8.01 (m, 6H, o-Ph–H), 7.70 (m, 9H, m,p-Ph–H), 5.32 (d,
4J = 6.8 Hz, 2H, allene–CH2); 13C NMR (150 MHz, CDCl3): 216.6, 142.1, 141.9,
141.4, 141.1, 140.5, 140.2, 133.2, 132.2, 132.0, 131.8, 131.7, 130.3, 128.2, 126.5,
This work was generously funded by a Science Foundation Ire-
land Research Professorship Award (SFI 04/RP1/B482) and we used
facilities provided by the Centre of Chemical Synthesis and Chem-
ical Biology funded by the HEA.
References and notes
125.5, 118.6, 109.3, 92.1; UV/Vis (CH2Cl2) kmax (log
575 (3.81); HRMS (MALDI) calcd for [M]+ C41H26N4Ni 632.1511, found
632.1530; IR cmÀ1
= 696 (aromatic H), 737 (aromatic H), 1537 (N–H),
e): 421 (5.41), 535 (4.31),
1. (a)The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.;
Academic Press: San Diego, California, 2000; Vol. 1, (b) Milgrom, L. R. The Colors
of Life: An Introduction to the Chemistry of Porphyrins and Related Compounds;
Oxford University Press: London, 1997.
2. (a) Maillard, P.; Loock, B.; Grierson, D. S.; Laville, I.; Blais, J.; Doz, F.; Desjardins,
L.; Carrez, D.; Guerquin-Kern, J. L.; Croisy, A. Photodiagn. Photodyn. Ther. 2007, 4,
261; (b) Molinari, A.; Bombelli, C.; Mannino, S.; Stringaro, A.; Toccacieli, L.;
Calcabrini, A.; Colone, M.; Mangiola, A.; Maira, G.; Luciani, P.; Mancini, G.;
Arancia, G. Int. J. Cancer 2007, 121, 1149; (c) Kiesslich, T.; Berlanda, J.; Plaetzer,
K.; Krammer, B.; Berr, F. Photochem. Photobiol. Sci. 2007, 6, 619; (d) Moghissi, K.;
Dixon, K. Photodiagn. Photodyn. Ther. 2005, 2, 135; (e) Kessel, D.; Dougherty, T. J.
Rev. Contemp. Pharmacol. 1999, 10, 19; (f) Wiehe, A.; Shaker, Y. M.; Brandt, J. C.;
Mebs, S.; Senge, M. O. Tetrahedron 2005, 61, 5535.
3. (a) Aviv, I.; Gross, Z. Chem. Eur. J. 2008, 14, 3995; (b) Zhang, H.-J.; Liu, Y.; Lu, Y.;
He, X.-S.; Wang, X.; Ding, X. J. Mol. Catal. A: Chem. 2008, 287, 80; (c)
Korotchenko, V. N.; Severin, K.; Gagne, M. R. Org. Biomol. Chem. 2008, 6,
1961; (d) Chatterjee, D. Coord. Chem. Rev. 2008, 252, 176.
4. (a) Ren, D.-M.; Guo, Z.; Du, F.; Liu, Z.-F.; Zhou, Z.-C.; Shi, X.-Y.; Chen, Y.-S.;
Zheng, J.-Y. Int. J. Mol. Sci. 2008, 9, 45; (b) Nobukuni, H.; Shimazaki, Y.; Tani, F.;
Naruta, Y. Angew. Chem., Int. Ed. 2007, 46, 8975; (c) Kojima, T.; Nakanishi, T.;
Harada, R.; Ohkubo, K.; Yamauchi, S.; Fukuzumi, S. Chem. Eur. J. 2007, 13, 8714;
:
m
1947 (C@C@C), 3054 (aromatic H). (b) Ni7 was synthesised using Ni5
(0.074 mmol), PdCl2(dppe) (10 mg, 0.018 mmol) and Cs2CO3 (254 mg,
0.78 mmol). The residue was chromatographed on silica gel using CH2Cl2/n-
hexane (1:2). The first fraction collected was Ni7 (29 mg, 61%). mp: >300 °C; 1H
NMR (400 MHz, CDCl3): 9.63 (d, 3J = 4.7 Hz, 2H, b-H), 8.99 (d, 3J = 4.7 Hz, 2H, b-
H), 8.85 (d, 3J = 4.7 Hz, 2H, b-H), 8.84 (d, 3J = 4.7 Hz, 2H, b-H), 8.20 (m, 6H, o-Ph–
H), 7.75 (m, 9H, m,p-Ph–H), 5.99 (d, 4J = 2.6 Hz, 2H, CH2), 2.51 (t, 4J = 2.6 Hz, 1H,
acetylene–H); 13C (150 MHz, CDCl3): 144.8, 142.8, 142.4, 142.1, 140.6, 140.5,
133.5, 133.4, 132.5, 132.0, 131.9, 131.5, 127.6, 126.7, 119.7, 119.2, 100.1, 93.4,
79.7, 5.2; UV/Vis (CH2Cl2) kmax (log e): 420 (5.47), 553 (4.18); HRMS (ESI) calcd.
for [M]+ C41H26N4Ni 632.1449, found 632.1530. (c) Zn9 was obtained using
Zn5 (0.073 mmol), PdCl2(dppe) (10 mg, 0.018 mmol) and K2CO3 (107 mg,
0.78 mmol). The residue was chromatographed on silica gel using CH2Cl2/n-
hexane (1:2). The first fraction collected gave Zn9 (22 mg, 46%). mp: >300 °C;
1H NMR (400 MHz, CDCl3): 9.63 (d, 3J = 4.7 Hz, 2H, b-H), 8.99 (d, 3J = 4.7 Hz, 2H,
b-H), 8.85 (d, 3J = 4.7 Hz, 2H, b-H), 8.84 (d, 3J = 4.7 Hz, 2H, b-H), 8.20 (m, 6H, o-
Ph–H), 7.75 (m, 9H, m,p-Ph–H), 5.99 (d, 4J = 2.6 Hz, 2H, CH2), 2.51 (t, 4J = 2.6 Hz,
1H, acetylene–H); 13C NMR (150 MHz, CDCl3): 150.1, 150.0, 149.8, 149.6, 143.5,
134.5, 132.5, 131.6, 128.5, 127.1, 126.3, 126.2, 122.9, 120.4, 86.0, 73.1, 29.7;