ORGANIC
LETTERS
2009
Vol. 11, No. 13
2744-2747
Acyl Polysilanes: New Acyl Anion
Equivalents for Additions to
Electron-Deficient Alkenes
Justin Bower,‡ Matthew R. Box,‡ Michal Czyzewski,† Andres E. Goeta,† and
Patrick G. Steel*,†
Department of Chemistry, Science Laboratories, Durham UniVersity, South Road,
Durham DH1 3LE, U.K., and Astra Zeneca, Alderley Park, Macclesfield, Cheshire
SK10 4TG, U.K.
Received April 14, 2009
ABSTRACT
Silenes, generated through thermolysis of acylpolysilanes, add to r,ꢀ-unsaturated esters to form cyclobutanes and silylsubstituted cyclopropanes
in moderate yields. Upon Si-C bond oxidation the cyclopropanes are converted directly to 1,4-dicarbonyl compounds, thus demonstrating
the formal acyl anion chemistry of acyl polysilanes.
The addition of an acyl anion to an R,ꢀ-unsaturated carbonyl
compound is a classical and valuable method to generate
synthetically useful 1,4-dicarbonyl compounds.1 Its simplest
form, the Stetter reaction, involves cyanide or thiazolium
salt promoted addition of an aldehyde to the acceptor enone.2
However, the high reactivity of the aldehyde under these
conditions can result in problems owing to self-condensation,
and consequently, many alternative acyl anion equivalents
have been described. One such class of acyl anion equivalents
are the acyl silanes, which have found widespread application
in synthesis.3 While these have proven to be effective for
Stetter-type reactions,4 in many cases their application requires
the use of basic or toxic promoters such as cyanide or fluoride.
In this Letter we describe the application of acyl polysilanes as
a neutral, thermally activated acyl anion equivalent for the
addition to R,ꢀ-unsaturated carbonyl compounds.
As part of a general program exploring the use of silenes,
compounds containing a CdSi bond, in synthesis,5-8 we had
previously explored the thermal [4 + 2] cycloaddition of
Brook-type silenes [R(R′3SiO)CdSi(SiR′3)2] with various
alkyl-substituted dienes. These proceeded as predicted to
afford the corresponding silacyclohexene in good yields and
moderate diastereoselectivity (Scheme 1).7
Although initial experiments had suggested that electron-
deficient dienes behaved similarly, a more detailed analysis
(5) Ottosson, H.; Steel, P. G. Chem.-Eur. J. 2006, 12, 1576–1585
.
(6) Pullin, R. D. C.; Sellars, J. D.; Steel, P. G. Org. Biomol. Chem.
2007, 5, 3201–3206. Hughes, N. J.; Pullin, R. D. C.; Sanganee, M. J.; Sellars,
J. D.; Steel, P. G.; Turner, M. J. Org. Biomol. Chem. 2007, 5, 2841–2848.
Sellars, J. D.; Steel, P. G. Org. Biomol. Chem. 2006, 4, 3223–3224. Sellars,
J. D.; Steel, P. G.; Turner, M. J. Chem. Commun. 2006, 2385–2387. Berry,
M. B.; Griffiths, R. J.; Sanganee, M. J.; Steel, P. G.; Whelligan, D. K.
‡ Astra Zeneca.
† Durham University.
(1) Johnson, J. S. Curr. Opin. Drug DiscoVery DeV. 2007, 10, 691–
703. Seebach, D. Angew. Chem., Int. Ed. 1979, 18, 239–258.
(2) Stetter, H. Angew. Chem., Int. Ed. 1976, 15, 639–647.
(3) Patrocinio, A. F.; Moran, P. J. S. J. Braz. Chem. Soc 2001, 12, 7–
31. Page, P. C. B.; Klair, S. S.; Rosenthal, S. Chem. Soc. ReV. 1990, 19,
147–195. Ricci, A.; Deglinnocenti, A. Synthesis 1989, 647–660.
(4) Mattson, A. E.; Bharadwaj, A. R.; Scheidt, K. A. J. Am. Chem. Soc.
2004, 126, 2314–2315.
Tetrahedron Lett. 2003, 44, 9135–9138
.
(7) Berry, M. B.; Griffiths, R. J.; Sanganee, M. J.; Steel, P. G.; Whelligan,
D. K. Org. Biomol. Chem. 2004, 2, 2381–2392. Batsanov, A. S.; Clarkson,
I. M.; Howard, J. A. K.; Steel, P. G. Tetrahedron Lett. 1996, 37, 2491–
2494
(8) Sanganee, M. J.; Steel, P. G.; Whelligan, D. K. Org. Biomol. Chem.
2004, 2, 2393–2402
.
.
10.1021/ol900813z CCC: $40.75
Published on Web 05/29/2009
2009 American Chemical Society