D
J. K. Mansaray et al.
Letter
Synlett
Funding Information
(11) Sugimura, H.; Yoshida, K. Bull. Chem. Soc. Jpn. 1992, 65, 3209–
3211.
We are grateful to the National Natural Science Foundation of China
(Grant No. 21702185) and the Science Foundation of Zhejiang Sci-
(12) Meijer, L. H.; Pandit, U. K. Tetrahedron 1985, 41, 467–472.
(13) Trost, B. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 259–281.
(14) Wender, P. A.; Verma, V. A.; Paxton, T. J.; Pillow, T. H. Acc. Chem.
Res. 2008, 41, 40–49.
Tech University (Grant No. 16062189-Y).
N
ati
o
n
a
lNaturalS
c
i
e
n
c
e
F
o
u
n
d
ati
o
n
of
C
h
i
n
a
(2
1
7
0
2
1
8
5)
(15) Dujardin, G.; Leconte, S.; Bénard, A.; Brown, E. Synlett 2001,
147–149.
Supporting Information
(16) (a) Yao, W.; Dou, X.; Lu, Y. J. Am. Chem. Soc. 2015, 137, 54–57.
(b) Yao, W.; Pan, L.; Wu, Y.; Ma, C. Org. Lett. 2010, 12, 2422–
2425. (c) Yao, W.; Wu, Y.; Wang, G.; Zhang, Y.; Ma, C. Angew.
Chem. Int. Ed. 2009, 48, 9713–9716.
Supporting information for this article is available online at
S
u
p
p
orti
n
gInformati
o
n
S
u
p
p
orit
n
gInformati
o
n
(17) β,γ-Unsaturated α-Keto Esters (1a–u); General Procedure A
To the solution of aldehyde (2 mmol) and pyruvate (2.4 mmol)
in toluene (10 mL) were added BF3•Et2O (1 mmol) and Ac2O (3
mmol). After stirring for 48 h at 40 °C, the mixture was poured
into saturated NaHCO3 (aq) solution (20 mL). The separated
aqueous phase was extracted with ethyl acetate (20 mL) and the
combined organic phases were washed by brine (20 mL), dried
with Na2SO4, filtered, and concentrated in vacuum. The residue
was filtered through a short pad of silica gel with petroleum
ether/ethyl acetate (10:1) as the eluent to obtain a crude prod-
uct, which was analyzed by 1H NMR spectroscopy to calculate
the E/Z ratio. Further purification was carried out by column
chromatography on silica gel with petroleum ether/ethyl
acetate (20:1) as the eluent to afford the products 1.
Ethyl (E)-4-Cyclohexyl-2-oxobut-3-enoate (1t)
References and Notes
(1) For reviews see: (a) Desimoni, G.; Faita, G.; Quadrell, P. Chem.
Rev. 2013, 113, 5924–5988. (b) Eftekhari-Sis, B.; Zirak, M. Chem.
Rev. 2015, 115, 151–264.
(2) Dou, X.; Hayashi, T. Adv. Synth. Catal. 2016, 358, 1054–1058.
(3) (a) Zhang, Q.; Lv, J.; Li, S.; Luo, S. Org. Lett. 2018, 20, 2269–2272.
(b) Ouyang, B.; Yu, T.; Luo, R.; Lu, G. Org. Biomol. Chem. 2014, 12,
4172–4176.
(4) (a) Sinha, D.; Perera, S.; Zhao, J. C.-G. Chem. Eur. J. 2013, 19,
6976–6979. (b) Lv, J.; Zhang, L.; Luo, S.; Cheng, J.-P. Angew.
Chem. Int. Ed. 2013, 52, 9786–9790. (c) Wang, L.; Lv, J.; Zhang, L.;
Luo, S. Angew. Chem. Int. Ed. 2017, 56, 10867–10871. (d) Kano,
T.; Maruyama, H.; Hommaa, C.; Maruoka, K. Chem. Commun.
2018, 54, 3496–3499. (e) Liu, Q.-J.; Wang, L.; Kang, Q.-K.; Zhang,
X. P.; Tang, Y. Angew. Chem. Int. Ed. 2016, 55, 9220–9223.
(5) (a) Hao, X.; Lin, L.; Tan, F.; Ge, S.; Liu, X.; Feng, X. Org. Chem.
Front. 2017, 4, 1647–1650. (b) Zhang, Y.; Yang, N.; Liu, X.; Guo,
J.; Zhang, X.; Lin, L.; Hua, C.; Feng, X. Chem. Commun. 2015, 51,
8432–8435. (c) Chen, X.; Jiang, H.; Hou, B.; Gong, W.; Liu, Y.;
Cui, Y. J. Am. Chem. Soc. 2017, 139, 13476–13482.
(6) (a) Li, Y.; Huang, Y.; Gui, Y.; Sun, J.; Li, J.; Zha, Z.; Wang, Z. Org.
Lett. 2017, 19, 6416–6419. (b) Deng, Y.-H.; Chen, J.-Q.; He, L.;
Kang, T. -R.; Liu, Q.-Z.; Luo, S.-W.; Yuan, W.-C. Chem. Eur. J. 2013,
19, 7143–7150. (c) Konda, S.; Guo, Q.-S.; Abe, M.; Huang, H.;
Arman, H.; Zhao, J. C.-G. J. Org. Chem. 2015, 80, 806–815.
(d) Wei, A.-J.; Nie, J.; Zheng, Y.; Ma, J.-A. J. Org. Chem. 2015, 80,
3766–3776.
(7) (a) Kuang, Y.; Shen, B.; Dai, L.; Yao, Q.; Liu, X.; Lin, L.; Feng, X.
Chem. Sci. 2018, 9, 688–692. (b) Konda, S.; Zhao, J. C.-G. Tetrahe-
dron Lett. 2014, 55, 5216–5218. (c) Chew, R.; Teo, K.; Huang, Y.;
Li, B.-B.; Li, Y.; Pullarkat, S. A.; Leung, P.-H. Chem. Commun.
2014, 50, 8768–8770. (d) Chen, S.; Wang, Y.; Zhou, Z. J. Org.
Chem. 2016, 81, 11432–11438.
(8) (a) Zhu, C.; Bi, B.; Ding, Y.; Zhang, T.; Chen, Q.-Y. Org. Biomol.
Chem. 2015, 13, 6278–6285. (b) Jiang, L.; Jin, W.; Hu, W. ACS
Catal. 2016, 6, 6146–6150.
Pale yellow oil; yield: 176 mg (42%). 1H NMR spectrum of the
crude product shows an E/Z ratio of >19:1. 1H NMR (400 MHz
CDCl3): δ = 7.09 (dd, J = 16.0, 6.8 Hz, 1 H), 6.57 (dd, J = 16.0, 1.1
Hz, 1 H), 4.31 (q, J = 7.1 Hz, 2 H), 2.29–2.13 (m, 1 H), 1.78–1.64
(m, 5 H), 1.35 (t, J = 7.1 Hz, 3 H), 1.31–1.08 (m, 5 H). 13C NMR
(101 MHz, CDCl3): δ = 183.8, 162.5, 159.6, 122.7, 62.2, 41.2,
31.4, 25.8, 25.6, 14.0.
(18) Collados, J. F.; Toledano, E.; Guijarro, D.; Yus, M. J. Org. Chem.
2012, 77, 5744–5750.
(19) Ti(OEt)4 System; General Procedure B
To the solution of aldehyde (2 mmol) and pyruvate (2.4 mmol)
in toluene (10 mL) was added Ti(OEt)4 (2.4 mmol). After stirring
for 72 h at 40 °C, the mixture was diluted with ethyl acetate (40
mL) and quenched with water (1 mL). After stirring for 0.5 h at
rt, the mixture was dried with Na2SO4, filtered, and concen-
trated in vacuum. The residue was filtered through a short pad
of silica gel with petroleum ether/ethyl acetate (10:1) as the
eluent to obtain a crude product, which was analyzed by 1H
NMR spectroscopy to calculate the E/Z ratio. Further purifica-
tion was carried out by column chromatography on silica gel
with petroleum ether/ethyl acetate (20:1) as the eluent to afford
the products 1.
Ethyl (E)-2-Oxohept-3-enoate (1s)
(9) (a) Yao, Q.; Yu, H.; Zhang, H.; Dong, S.; Chang, F.; Lin, L.; Liu, X.;
Feng, X. Chem. Commun. 2018, 54, 3375–3378. (b) Jin, H.; Lee, J.;
Shi, H.; Lee, J.; Yoo, E.; Song, C.; Ryu, D. Org. Lett. 2018, 20, 1584–
1588. (c) Sadeghzadeh, S. RSC. Adv. 2016, 6, 99586–99594.
(d) Cheng, Y.; Han, Y.; Li, P. Org. Lett. 2017, 19, 4774–4777.
(e) Wang, S.; Radosevich, A. T. Org. Lett. 2013, 15, 1926–1929.
(f) Li, E.; Huang, Y. Chem. Eur. J. 2014, 20, 3520–3527. (g) Duan,
J.; Cao, F.; Wang, X.; Ma, C. Chem. Commun. 2013, 49, 1124–
1126.
Pale yellow oil; yield: 122 mg (36%). 1H NMR spectrum of the
1
crude product shows an E/Z ratio of >19:1. H NMR (400 MHz,
CDCl3): δ = 7.18 (dt, J = 15.8, 6.9 Hz, 1 H), 6.64 (d, J = 15.9 Hz, 1
H), 6.64 (d, J = 15.9 Hz, 1 H), 4.34 (q, J = 7.1 Hz, 2 H), 2.29 (td, J =
8.0, 1.0 Hz, 2 H), 1.59–1.47 (m, 2 H), 1.37 (t, J = 7.1 Hz, 3 H), 0.95
(t, J = 7.4 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 183.5, 162.4,
154.9, 125.3, 62.30, 35.1, 21.1, 14.0, 13.7.
(20) Yang, C.; Chen, X.; Tang, T.; He, Z. Org. Lett. 2016, 18, 1486–1489.
(10) Stecher, E. D.; Ryder, H. F. J. Am. Chem. Soc. 1952, 74, 4392–4395.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2019, 30, A–D