Table 2 HOMO–LUMO energies (eV) for R1R2CQCQCHR3
7.41 (tt, J = 7.4 and 1.3 Hz, 2H), 7.56 (m, 4H), 7.69 (m, 4H);13C NMR
(100 MHz, CDCl3, 25 1C): d = 51.5, 92.4, 117.8, 127.6, 128.0, 128.1,
128.2, 129.2, 129.9, 132.5, 134.8, 151.2, 163.3, 164.7; IR (HCCl3):
n~ = 3027.8, 1730.3, 1449.9, 1436.1, 1343.8, 1268.1, 1222.3, 1108.6
cmꢀ1; anal. calc. for C36H28O8: C, 73.46; H, 4.79. Found: C, 73.47; H,
4.71%; m/z (%): 588 (0.3) [M+], 362 (8.4), 162 (28), 130 (19), 105
(100), 77 (32). Cyclobutene 8aa: yellow solid, mp = 156.5–157.9 1C; 1H
NMR (400 MHz, CDCl3, 25 1C): d = 3.32 (s, 3H), 3.38 (s, 3H), 6.08 (s,
1H), 7.33–7.41 (m, 6H), 7.46–7.54 (m, 6H), 7.65 (tt, J = 7.5 and 1.3
Hz, 2H), 8.19 (m, 2H); 13C NMR (100 MHz, CDCl3, 25 1C): d = 51.0,
51.5, 110.4, 126.5, 127.5, 127.9, 128.0, 128.6, 128.77, 128.79, 129.0,
129.5, 130.1, 131.1, 133.9, 134.4, 136.5, 142.2, 149.5, 156.6, 161.5,
164.6, 165.4; IR (HCCl3): n~ = 3028.2, 2953.0, 1731.6, 1435.9, 1258.0,
1063.4 cmꢀ1; anal. calc. for C29H22O6: C, 74.67; H, 4.75. Found: C,
74.77; H, 5.00%; m/z (%): 466 (24) [M+], 330 (10), 215 (17), 106 (19),
105 (100), 77 (60).
R1
R2
R3
HOMO
LUMO
DE
H
H
H
H
H
OBz
OBz
H
H
H
CO2Me
H
CO2Me
ꢀ0.26297
ꢀ0.21846
ꢀ0.24221
ꢀ0.26746
ꢀ0.21814
ꢀ0.22733
0.02065
ꢀ0.02670
ꢀ0.05275
ꢀ0.03807
ꢀ0.04983
ꢀ0.05703
0.28362
0.19176
0.18946
0.22939
0.16831
0.17030
Ph
OBz
H
Ph
Ph
regio- and stereoselectivity, a concerted mechanism cannot be
ruled out.12
In summary, we have reported a novel and efficient
organocatalytic synthetic manifold to gain access to bifunctional
allenes 1 from readily available starting materials, under mild
reaction conditions and in very short periods of time. In the
absence of other chemical reactants, these allenes suffer a
remarkably smooth thermally-driven dimerization to form
the functionalized complex cyclobutanes 6 and cyclobutenes
8. Overall, the reaction mainly generates one C2-symmetric
cyclobutane ring featuring two quaternary aromatic esters,
1 A. K. Yudin and R. Hili, Chem.–Eur. J., 2007, 13, 6538.
2 A. Domling, Chem. Rev., 2006, 106, 17.
¨
3 (a) Modern Allene Chemistry, ed. N. Krause and A. S. E. K.
Hashmi, Wiley-VCH, Weinheim, 2004; (b) K. M. Brummond and
J. E. DeForrest, Synthesis, 2007, 795; (c) S. Ma, Chem. Rev., 2005,
105, 2829.
4 For a selected review: D. J. Pasto, Tetrahedron, 1984, 40, 2805.
5 (a) D. Tejedor, S. Lo
and F. Garcıa-Tellado, Angew. Chem., Int. Ed., 2009, DOI:
10.1002/anie.200801987; (b) D. Tejedor, D. Gonzalez-Cruz,
A. Santos-Exposito, J. J. Marrero-Tellado, P. de Armas and
F. Garcıa-Tellado, Chem.–Eur. J., 2005, 11, 3502.
pez-Tosco, F. Cruz-Acosta, G. Mendez-Abt
´ ´
´
´
two exocyclic conjugated aliphatic esters, and thus,
a
´
(Z,Z)-1,3-diene function. Interestingly, the reaction network
forms two C–O and four C–C bonds, while it breaks only two
C–C bonds. Finally, and not less important, the in situ
generation of these allenes is mild enough to be compatible
´
6 The number of reported examples in the bibliography for these
units is scarce. For selected examples, see: (a) T. Schwier,
A. W. Sromek, D. M. L. Yap, D. Chernyak and V. Gevorgyan,
J. Am. Chem. Soc., 2007, 129, 9868 and references cited therein;
(b) C. Bee and M. A. Tius, Org. Lett., 2003, 5, 1681;
(c) M. R. Sestrick, M. Miller and L. S. Hegedus, J. Am. Chem.
Soc., 1992, 114, 4079.
with
a large number of organic functionalities and it
constitutes an excellent workbench for the discovery of new
complexity generating processes. The efficient formation of
enamine 4 is a good example of this property. This issue is
being developed in our lab.
7 (a) D. Tejedor, A. Santos-Expo
Chem.–Eur. J., 2007, 13, 1201; (b) D. Gonzalez-Cruz,
D. Tejedor, P. de Armas and F. Garcıa-Tellado, Chem.–Eur. J.,
2007, 13, 4823; (c) D. Tejedor, F. Garcıa-Tellado, J. J. Marrero-
sito and F. Garcıa-Tellado,
´ ´
´
This work was supported by the Spanish Ministerio de
´
Tellado and P. de Armas, Chem.–Eur. J., 2003, 9, 3122.
8 For a precedent for this rearrangement: A. N. Pillai, C. H. Suresh,
C. H and V. Nair, Chem.–Eur. J., 2008, 14, 5851.
Educacion y Ciencia and the European Regional Development
´
Fund (CTQ2005-09074-C02-02), the Spanish MSC ISCIII
(RETICS RD06/0020/1046), CSIC (Proyecto Intramural
9 ABB’ three-component reaction is defined as a chemical process
that utilizes two different components (A and B) to give a product
which incorporates into its structure one unit of component A and
two chemo-differentiated units of component B (B and B’). For full
details and more examples of this type of multicomponent reac-
Especial 200719) and Fundacio
Investigacion del Cancer (FICI-G.I.N108/2007). The authors
thank technicians Sonia Rodriguez Dıaz and Aida Sanchez
Lopez for preparative work.
´
n Instituto Canario de
´
´
´
´
´
´
tions: D. Tejedor and F. Garcıa-Tellado, Chem. Soc. Rev., 2007,
36, 484.
Notes and references
10 (a) A. Rauk, Orbital Interaction Theory of Organic Chemistry, John
Wiley and Sons, New York, 1994, pp. 118; (b) D. Nori-Shargh,
F. Deyhimi, J. E. Boggs, J.-B. Saeed and R. Shakibazadeh, J. Phys.
Org. Chem., 2007, 20, 355.
z Representative procedure: 1,2-diketone 2a (3.00 mmol) and methyl
propiolate (3a) (3.00 mmol) are dissolved in CH2Cl2 (5 mL) and the
solution is cooled to 0 1C in an ice bath. Et3N (0.30 mmol) is added
and the reaction is allowed to react overnight without further cooling.
Et3N (3 mmol) is added and the reaction is allowed to react for one
additional day (this step simplifies the isolation of 6aa while 7aa
cis/trans transforms into 8aa. Purification of products 6aa trans/cis
and 8aa was carried out by flash column chromatography (silica gel,
n-hexane–EtOAc 80 : 20 to 60 : 40). Cyclobutane 6aa trans-isomer
(major): white solid, mp = 181.0–182.6 1C; 1H NMR (400 MHz,
CDCl3, 25 1C): d = 3.37 (s, 6H), 6.86 (s, 2H), 7.16–7.29 (m, 10H),
11 (a) For an interesting example of allene dimerization involving
stabilized bisallyl biradical intermediates see: E. V. Banide,
Y. Ortin, C. M. Seward, L. E. Harrington, H. Muller-Bunz and
¨
M. J. McGlinchey, Chem.–Eur. J., 2006, 12, 3275 and references
cited therein. For mechanistic considerations on the biradical
mechanism, see: (b) M. Christl, S. Groetsch and K. Gunter, Angew.
¨
Chem., Int. Ed., 2000, 39, 3261 and references cited therein.
12 A theoretical study of this reaction is undergoing in our group.
ꢁc
This journal is The Royal Society of Chemistry 2009
2370 | Chem. Commun., 2009, 2368–2370