Structure Variation and Luminescence Properties of Ln Complexes
1564 (m), 1456 (m), 1307 (s), 755 (w) cm–1. Data for [SmL(NO3)3- Supporting Information (see footnote on the first page of this arti-
(CH3OH)]ϱ, C41H40N7O16Sm (1037): calcd. C 47.48, H 3.89, N
9.45, Sm 14.50; found C 47.59, H 3.90, N 9.43, Sm 14.43. IR (KBr):
cle): Crystal data and structure refinement, the view of the 1D
chain of the EuIII complex, the 3D supramolecular structure of the
EuIII complex showing π–π stacking interactions, the 3D supramo-
lecular structure of the GdIII complex, a space-filling diagram of
ν = 3348 (br. s), 2922 (m), 1611 (s, C=O), 1452 (m), 1308 (s), 1222
˜
(m), 1110 (m), 1038 (m), 752 (w) cm–1. Data for [EuL(NO3)3-
(H2O)]ϱ, C40H38EuN7O16 (1025): calcd. C 46.88, H 3.74, Eu 14.83, the nanosized holes in the GdIII complex constructed by intermo-
N 9.57; found C 47.06, H 3.71, Eu 14.77, N 9.53. IR (KBr): ν =
lecular hydrogen bonds, fluorescence of the Gd complex at room
˜
3422 (br. s), 2922 (w), 1611 (s, C=O), 1457 (m), 1304 (s), 1222 temperature and phosphorescence spectra of the Gd complex at
(m), 752 (w) cm–1. Data for [GdL(NO3)3(H2O)]ϱ, C40H38GdN7O16 77 K (Table S1, Figures S1–S6, see also the footnote on the first
(1030): calcd. C 46.64, H 3.72, Gd 15.27, N 9.52; found C 46.42,
page of this article).
H 3.71, Gd 15.21, N 9.48. IR (KBr): ν = 3350 (br. s), 2928 (m),
˜
1611 (s, C=O), 1480 (m), 1294 (s), 1227 (m), 754 (w) cm–1. Data
for [TbL(NO3)3(H2O)]ϱ, C40H38N7O16Tb (1032): C 46.57, H 3.71,
N 9.50, Tb 15.40; found C 46.38, H 3.69, N 9.46, Tb 15.34. IR
Acknowledgments
This work was supported by the National Natural Science Founda-
tion of China (Grants 20771048, 20431010, 20621091, and
J0630962).
(KBr): ν = 3378 (br. s), 2927 (m), 1611 (s, C=O), 1452 (m), 1308
˜
(s), 1221 (m), 752 (w) cm–1. Data for [DyL(NO3)3(H2O)2]·CH3OH,
C41H44DyN7O18 (1085): C 45.37, H 4.09, Dy 14.97, N 9.03; found
C 45.59, H 4.07, Dy 14.92, N 9.07. IR (KBr): ν = 3348 (br. s), 2922
˜
[1] a) E. Brunet, O. Juanes, J.-C. Rodriguez-Ubis, Curr. Chem.
Biol. 2007, 1, 11–39; b) J.-C. G. Bünzli, C. Piguet, Chem. Soc.
Rev. 2005, 34, 1048–1077; c) J. Yuan, G. Wang, J. Fluorescence
2005, 15, 559–568.
[2] a) G. F. de Sá, O. L. Malta, C. de Mello Donegá, A. M. Simas,
R. L. Longon, P. A. Santa-Cruz, E. F. da Silva Jr, Coord.
Chem. Rev. 2000, 196, 165–195; b) J.-M. Lehn, Angew. Chem.
Int. Ed. Engl. 1990, 29, 1304–1319.
[3] a) D. A. Bardwell, J. C. Jeffery, P. L. Jones, J. A. McCleverty,
E. Psillakis, Z. Reeves, M. D. Ward, J. Chem. Soc., Dalton
Trans. 1997, 2079–2086; b) A. Døssing, H. Toftlund, A. Hazell,
J. Bourassa, P. C. Ford, J. Chem. Soc., Dalton Trans. 1997, 335–
364.
[4] a) N. Sabbatini, M. Guardigli, I. Manet in Handbook on the
Physics and Chemistry of Rare Earths (Eds.: K. A. Eyring Jr, L.
Gschneidner), North-Holland, Amsterdam, The Netherlands,
1996, 23, 70–119; b) N. M. Shavaleev, L. P. Moorcraft, S. J. A.
Pope, Z. R. Bell, S. Faulkner, M. D. Ward, Chem. Commun.
2003, 1134–1135; c) J. Zhang, P. D. Badger, S. J. Geib, S. Pe-
toud, Angew. Chem. Int. Ed. 2005, 44, 2508–2512; d) S. Viswan-
athan, A. de Bettencourt-Dias, Inorg. Chem. Commun. 2006, 9,
444–448.
(m), 1610 (s, C=O), 1452 (m), 1308 (s), 1222 (m), 1035 (m), 752
(w) cm–1. Data for [ErL(NO3)3(H2O)2]·CH3OH, C41H44ErN7O18
(1090): C 45.18, H 4.07, Er 15.34, N 8.99; found C 45.27, H 4.08,
Er 15.28, N 9.02. IR (KBr): ν = 3408 (br. s), 2926 (m), 1610 (s,
˜
C=O), 1458 (m), 1224 (m), 1036 (m), 752 (w) cm–1.
Physical Measurements: The metal ions were determined by EDTA
titrations using Xylenol Orange as the indicator. C,H,N elemental
analyses were performed with an Elementar Vario EL. Melting
points were determined with a Kofler apparatus. IR spectra were
recorded with a Nicolet FT-170SX instrument using KBr discs in
the 400–4000 cm–1 region. 1H NMR spectra were measured with a
Varian Mercury plus 300B spectrometer in CDCl3 solution with
TMS as the internal standard. The electronic spectra were recorded
with a RF-540 spectrophotometer in an ethyl acetate solution.
Fluorescence measurements were made with a Hitachi F-4500 spec-
trophotometer and a shimadzu RF-540 spectrofluorophotometer
equipped with quartz cuvettes of 1 cm path length. An excitation
slit of 2.5 nm and an emission slit of 2.5 nm were used for the
measurements in the solid state. The 77 K solid-state emission spec-
tra were recorded with solid samples loaded into a quartz tube
inside a quartz-walled optical Dewar flask filled with liquid nitro-
gen. The 77 K solution-state phosphorescence spectra were re-
corded with solution samples loaded into a quartz tube inside a
quartz-walled optical Dewar flask filled with liquid nitrogen in the
phosphorescence mode.
[5] O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Ed-
daoudi, J. Kim, Nature 2003, 423, 705–714.
[6] N. L. Rosi, M. Eddaoudi, J. Kim, M. O’Keeffe, O. M. Yaghi,
CrystEng. Commun. 2002, 4, 401–404.
[7] J. Kim, B. Chen, T. M. Reineke, H. Li, M. Eddaoudi, D. B.
Moler, M. O’Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2001, 123,
8239–8247.
X-Ray Crystallographic Analysis of the Complex: A single crystal
suitable for detection was selected and subsequently glued to the
tip of a glass fiber. The determination of the crystal structure at
25 °C was carried out with an X-ray diffractometer (Bruker Smart-
1000 CCD) using graphite-monochromated Mo-Kα radiation (λ =
0.71073 Å). All non-hydrogen atoms were refined with anisotropic
thermal parameters. Hydrogen atoms were placed in calculated po-
sitions and included in the final cycles of refinement using a riding
model. The programs used for structure solution and refinement
were SHELXS-97 and SHELXL-97, respectively. The crystallo-
graphic data and details of the structure refinement for the com-
plexes are listed in Table S1.
[8] M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M.
O’Keeffe, O. M. Yaghi, Acc. Chem. Res. 2001, 34, 319–330.
[9] B. Chen, M. Eddaoudi, S. T. Hyde, M. O’Keeffe, O. M. Yaghi,
Science 2001, 291, 1021–1023.
[10] M. E. Braun, C. D. Steffek, J. Kim, P. G. Rasmussen, O. M.
Yaghi, Chem. Commun. 2001, 24, 2532–2533.
[11] H.-Y. Han, Y.-L. Song, H.-W. Hou, Y.-T. Fan, Y. Zhu, Dalton
Trans. 2006, 1972–1980.
[12] P. M. Forster, A. K. Cheetham, Microporous Mesoporous Ma-
ter. 2004, 73, 57–64.
[13] a) Z. Wang, M. Strobele, K.-L. Zhang, H. J. Meyer, X.-Z. You,
Z. Yu, Inorg. Chem. Commun. 2002, 5, 230–234; b) S. Lipst-
man, S. Muniappan, S. George, I. Goldberg, Dalton Trans.
2007, 3273–3281.
[14] Y. Wan, L. Zhang, L. Jin, S. Gao, S. Lu, Inorg. Chem. 2003,
42, 4985–4994.
CCDC-662759 (for {[PrL(NO3)3(H2O)CH3OH]·3/2H2O}ϱ), -662760
(for {[NdL(NO3)3(H2O)CH3OH]·1/2CH3OH}ϱ), -669035 (for [SmL-
(NO3)3(CH3OH)]ϱ), -662761 (for [EuL(NO3)3(H2O)]ϱ), -662764
(for [GdL(NO3)3(H2O)]ϱ), -662762 (for [DyL(NO3)3(H2O)2]·
CH3OH), and -662763 (for [ErL(NO3)3(H2O)2]·CH3OH) contain
the supplementary crystallographic data for this paper. These data
can be obtained free of charge from The Cambridge Crystallo-
graphic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
[15] Y.-H. Wan, L.-P. Zhang, L.-P. Jin, J. Mol. Struct. 2003, 658,
253–260.
[16] L. A. Borkowski, C. L. Cahill, Inorg. Chem. Commun. 2004, 7,
725–728.
[17] L. A. Borkowski, C. L. Cahill, Acta Crystallogr., Sect. C Cryst.
Struct. Commun. 2004, 60, 159–161.
Eur. J. Inorg. Chem. 2008, 1901–1912
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
1911