M. Wang et al. / European Journal of Medicinal Chemistry 44 (2009) 2748–2753
2753
proton cyclotron on research purity nitrogen (þ1% O2) in a Siemens
References
radionuclide delivery system (Eclipse RDS-111). In a small reaction
[1] E. Briard, S.S. Zoghbi, M. Imaizumi, J.P. Gourley, H.U. Shetty, J. Hong, V. Cropley,
M. Fujita, R.B. Innis, V.W. Pike, J. Med. Chem. 51 (2008) 17–30.
[2] F. Yasuno, M. Ota, J. Kosaka, H. Ito, M. Higuchi, T.K. Doronbekov, S. Nozaki,
Y. Fujimura, M. Koeda, T. Asada, T. Suhara, Biol. Psychiatry (2008). doi:10.1016/
j.biopsych.2008.04.021.
vial (5 mL), the precursor 9 (0.1 mg) was dissolved in CH3CN
(300 mL). To this solution was added NaH (1 mg). No-carrier-added
(high specific activity) [11C]CH3OTf that was produced by the gas-
phase production method [31] from [11C]CO2 through [11C]CH4 and
[3] K. Yanamoto, M.R. Zhang, K. Kumata, A. Hatori, M. Okada, K. Suzuki, Neurosci.
Lett. 428 (2007) 59–63.
[
11C]CH3Br with silver triflate (AgOTf) column was passed into the
reaction vial at rt, until radioactivity reached a maximum (w2 min),
and then the reaction vial was isolated and reacted at rt for 5 min.
The contents of the reaction vial were diluted with NaHCO3 (1 mL,
0.1 M), and injected onto the semi-preparative HPLC column with
2 mL injection loop. The product fraction was collected, the solvent
was removed by rotatory evaporation under vacuum, and the final
[4] J. Maeda, B. Ji, T. Irie, T. Tomiyama, M. Maruyama, T. Okauchi, M. Staufenbiel,
N. Iwata, M. Ono, T.C. Saido, K. Suzuki, H. Mori, M. Higuchi, T. Suhara,
J. Neurosci. 27 (2007) 10957–10968.
[5] S. Venneti, G. Wang, C.A. Wiley, Neurobiol. Dis. 29 (2008) 232–241.
[6] S. Venneti, A.K. Wagner, G. Wang, S.L. Slagel, X. Chen, B.J. Lopresti, C.A. Mathis,
Exp. Neurol. 207 (2007) 118–127.
[7] S. Venneti, B.J. Lopresti, G. Wang, S.L. Slagel, N.S. Mason, C.A. Mathis,
M.L. Fischer, N.J. Larsen, A.D. Mortimer, T.G. Hastings, A.D. Smith,
M.J. Zigmond, T. Suhara, M. Higuchi, C.A. Wiley, J. Neurochem. 102 (2007)
2118–2131.
[8] J. Maeda, M. Higuchi, M. Inaji, B. Ji, E. Haneda, T. Okauchi, M.R. Zhang,
K. Suzuki, T. Suhara, Brain Res. 1157 (2007) 100–111.
[9] M. Imaizumi, H.J. Kim, S.S. Zoghbi, E. Briard, J. Hong, J.L. Musachio, C. Ruetzler,
D.M. Chuang, V.W. Pike, R.B. Innis, M. Fujita, Neurosci. Lett. 411 (2007) 200–205.
[10] M.L. James, S. Selleri, M. Kassiou, Curr. Med. Chem. 13 (2006) 1991–2001.
[11] Y. Ikoma, F. Yasuno, H. Ito, T. Suhara, M. Ota, H. Toyama, Y. Fujimura, A. Takano,
J. Maeda, M.R. Zhang, R. Nakao, K. Suzuki, J. Cereb. Blood Flow Metab. 27
(2007) 173–184.
[12] J. Maeda, T. Suhara, M.R. Zhang, T. Okauchi, F. Yasuno, Y. Ikoma, M. Inaji,
Y. Nagai, A. Takano, S. Obayashi, K. Suzuki, Synapse 52 (2004) 283–291.
[13] T. Funakoshi, S. Chaki, S. Okuyama, T. Okubo, A. Nakazato, M. Nagamine,
K. Tomisawa, Res. Commun. Mol. Pathol. Pharmacol. 105 (1999) 35–41.
[14] M. Shidahara, Y. Ikoma, C. Seki, Y. Fujimura, M. Naganawa, H. Ito, T. Suhara,
I. Kanno, Y. Kimura, Eur. J. Nucl. Med. Mol. Imaging 35 (2008) 416–423.
[15] Y. Fujimura, Y. Ikoma, F. Yasuno, T. Suhara, M. Ota, R. Matsumoto, S. Nozaki,
A. Takano, J. Kosaka, M.R. Zhang, R. Nakao, K. Suzuki, N. Kato, H. Ito, J. Nucl.
Med. 47 (2006) 43–50.
product,
[
11C]FEDAA1106 ([11C]10), was formulated in saline,
m cellulose
sterile-filtered through a sterile vented Millex-GS 0.22
m
acetate membrane, and collected into a sterile vial. Total radioac-
tivity was assayed and total volume was noted for tracer dose
dispensing. The overall synthesis, purification and formulation time
was 20–25 min from EOB. Analytical HPLC was performed using
a Prodigy (Phenomenex) 5
CH3CN–H2O mobile phase; flow rate 1.5 mL/min; and UV (254 nm)
and -ray (NaI) flow detectors. Semi-preparative HPLC was per-
formed using Prodigy (Phenomenex), S-5 m, 12 nm,
10 ꢀ 250 mm i.d. C-18 column; 70% CH3CN–H2O mobile phase; flow
rate 5.0 mL/min; and UV (254 nm) and -ray (NaI) flow detectors.
mm C-18 column, 4.6 ꢀ 250 mm; 70%
g
a
m
g
Retention times in the analytical HPLC system were: tR
9 ¼ 3.20 min, tR 10 ¼ 5.13 min, tR
[
11C]10 ¼ 5.13 min. Retention
times in the semi-preparative HPLC system were: tR 9 ¼ 5.62 min, tR
[16] W.F. Khalaf, F.-C. Yang, S. Chen, H. White, W. Bessler, D.A. Ingram, D.W. Clapp,
J. Immunol. 178 (2007) 2527–2534.
[17] F.-C. Yang, S. Chen, T. Clegg, X. Li, T. Morgan, S.A. Estwick, J. Yuan, W. Khalaf,
S. Burgin, J. Travers, L.F. Parada, D.A. Ingram, D.W. Clapp, Hum. Mol. Genet. 15
(2006) 2421–2437.
10 ¼ 7.78 min, tR
[
11C]10 ¼ 7.78 min. The radiochemical yields were
60–70% decay corrected to EOB, based on [11C]CO2.
[18] Y. Shi, S. Ciccone, F.-C. Yang, J. Yuan, D. Zeng, S. Chen, H.J. van de Vrugt,
J. Critser, F. Arwert, L.S. Haneline, D.W. Clapp, Blood 108 (2006) 4283–4287.
[19] S. Chaki, T. Funakoshi, R. Yoshikawa, S. Okuyama, T. Okubo, A. Nakazato,
M. Nagamine, K. Tomisawa, Eur. J. Pharmacol. 371 (1999) 197–204.
[20] S. Okuyama, S. Chaki, R. Yoshikawa, S. Ogawa, Y. Suzuki, T. Okubo, A. Nakazato,
M. Nagamine, K. Tomisawa, Life Sci. 64 (1999) 1455–1464.
[21] T. Okubo, R. Yoshikawa, S. Chaki, S. Okuyama, A. Nakazato, Bioorg. Med. Chem.
12 (2004) 423–438.
[22] M.R. Zhang, J. Maeda, M. Ogawa, J. Noguchi, T. Ito, Y. Yoshida, T. Okauchi,
S. Obayashi, T. Suhara, K. Suzuki, J. Med. Chem. 47 (2004) 2228–2235.
[23] M.R. Zhang, K. Kumata, J. Maeda, T. Haradahira, J. Noguchi, T. Suhara,
C. Halldin, K. Suzuki, J. Med. Chem. 50 (2007) 848–855.
[24] R. Camsonne, C. Crouzel, D. Comar, M. Maziere, C. Prenant, J. Sastre,
M.A. Moulin, J. Labelled Compd. Radiopharm. 21 (1984) 985–991.
[25] M.R. Zhang, T. Kida, J. Noguchi, K. Furutsuka, J. Maeda, T. Suhara, K. Suzuki,
Nucl. Med. Biol. 30 (2003) 513–519.
[26] M.R. Zhang, J. Maeda, K. Furutsuka, Y. Yoshida, M. Ogawa, T. Suhara, K. Suzuki,
Bioorg. Med. Chem. Lett. 13 (2003) 201–204.
[27] K.C. Probst, D. Izquierdo, J.L. Bird, L. Brichard, D. Franck, J.R. Davies, T.D. Fryer,
H.K. Richards, J.C. Clark, A.P. Davenport, P.L. Weissberg, E.A. Warburton, Nucl.
Med. Biol. 34 (2007) 439–446.
[28] J. Mukherjee, B. Shi, B.T. Christian, S. Chattopadhyay, T.K. Narayanan, Bioorg.
Med. Chem. 12 (2004) 95–102.
4. Conclusions
An efficient and convenient synthesis of new PET PBR radio-
ligand [11C]FEDAA1106 has been well developed. The synthetic
methodology employed classical organic chemistry such as ben-
zylation, alkylation, reduction, bromination, acetylation, hydroge-
nation and methylation to prepare phenolic precursor and standard
compound FEDAA1106. The target radioligand [11C]FEDAA1106 was
prepared by O-[11C]methylation of its corresponding phenolic
precursor using a reactive [11C]methylating agent, [11C]CH3OTf, and
isolated by HPLC purification procedure in high radiochemical
yields, short overall synthesis time, and high specific radioactiv-
ities. These chemistry results combined with the reported in vitro
and in vivo biological data [14,15,22] encourage further in vivo
biological evaluation of new carbon-11 labeled FEDAA1106 analog,
[
11C]FEDAA1106, as a potential PET radioligand for imaging of PBRs
in brain and tumor.
[29] G.G. Haraldsson, J.E. Baldwin, Tetrahedron 53 (1997) 215–224.
[30] A.F. Barrero, J.F. Quilez del Moral, M. Mar Herrador, P. Arteaga, M. Cortes,
J. Benites, A. Rosellon, Tetrahedron 62 (2006) 6012–6017.
Acknowledgments
[31] B.H. Mock, G.K. Mulholland, M.T. Vavrek, Nucl. Med. Biol. 26 (1999) 467–471.
[32] D.M. Jewett, Int. J. Radiat. Appl. Instrum. A 43 (1992) 1383–1385.
[33] B.H. Mock, Q.-H. Zheng, T.R. DeGrado, J. Labelled Compd. Radiopharm. 48
(2005) S225.
[34] B.H. Mock, B.E. Glick-Wilson, Q.-H. Zheng, T.R. DeGrado, J. Labelled Compd.
Radiopharm. 48 (2005) S224.
[35] Q.-H. Zheng, B.H. Mock, Biomed. Chromatogr. 19 (2005) 671–676.
[36] J. Maeda, M. Higuchi, T. Suhara, Nihon Shinkei Seishin Yakurigaku Zasshi 26
(2006) 17–21.
This work was partially supported by the Indiana Genomics
Initiative (INGEN) of Indiana University, which is supported in part
by Lilly Endowment Inc. The authors would like to thank Dr. Bruce H.
Mock and Barbara E. Glick-Wilson for their assistance in production
of [11C]CH3OTf. The referees’ criticisms and editor’s comments for
the revision of the manuscript are greatly appreciated.