Organometallics 2009, 28, 3625–3628 3625
DOI: 10.1021/om900283s
Metalation-Resistant β-Diketiminato Ligands for Thermally Robust
Organoscandium Complexes
Alyson L. Kenward, Jennifer A. Ross, Warren E. Piers,* and Masood Parvez
University of Calgary, 2500 University Drive N.W., Calgary, Canada, T2N 1N4
Received April 14, 2009
Summary: A new ligand design for the widely used β-diketi-
for further transformations requiring the application of heat6
and has also impeded the isolation of base-free yttrium alkyl
cations. Metalation has also been observed to be accelerated in
the presence of Lewis acids.7
minato framework implements a “remote steric bulk” strategy
for the stabilization of low-coordinate, metalation-resistant
organoscandium complexes. In comparison to standard
ligands, substantial improvements in thermal stability for
neutral dialkyl and cationic alkyl organoscandium complexes
are observed.
To circumvent this problem, we have reevaluated the
β-diketiminato ligand design. The need to remove the
offending C-H bonds from the vicinity of the metal’s
coordination sphere while maintaining the steric presence
necessary for mononuclearity and low coordination
numbers led us to consider a ligand with “remote
steric bulk”, using principles articulated and implemented
by Wolczanski8 and Stephan.9 In this instance, relocation
of the N-aryl substitution from the ortho to the meta
positions, in concert with increasing their size, led us to
consider ligands 1 and 2.
Bulky β-diketiminato, or “nacnac”, ligands have emerged
as important ancillaries for metals from across the periodic
table for a variety of applications.1 One area of particularly
high interest has been their use in stabilizing low-coordinate
early transition metal complexes containing metal-alkyl,
amido, and imido moieties.1,2 The most commonly employed
β-diketiminato ligands utilize N-aryl groups with ortho-
substitution (typically isopropyl groups) to provide steric bulk
close to the metal center, with some fine-tuning available via
modulation of the alkyl groups in the ligand backbone, I.
We have successfully deployed these ligands on group
3 metals scandium3 and yttrium,4 preparing low-coordinate
bis-alkyls and well-defined alkyl cations5 of moderate thermal
stability. While workable under ambient conditions, these
compounds are prone to metalative decomposition pathways,
involving alkane elimination via σ-bond metathesis with a
C-H bond of an ortho-isopropyl group from one of the
N-aryl substituents. This has become particularly problematic
(6) (a) Knight, L. K.; Piers, W. E.; Fleurat-Lessard, P.; McDonald,
R.; Parvez, M. Organometallics 2004, 23, 2087. (b) Knight, L. K.; Piers,
W. E.; McDonald, R. Organometallics 2006, 25, 3289. (c) Basuli, F.;
Tomaszewski, J.; Huffman, J. C.; Mindiola, D. J. Organometallics 2003,
22, 4705.
(7) Conroy, K. D.; Hayes, P. G.; Piers, W. E.; Parvez, M. Organo-
metallics 2007, 26, 4464.
(8) Wolczanski, P. T. Polyhedron 1995, 14, 3335.
(9) Stephan, D. W. Organometallics 2005, 24, 2548.
(10) See Supporting Information for detailed preparation of terphe-
nyl aniline H2N-3,5-(2,4,6-iPrC6H2)C6H3 via amination of a known aryl
bromide: Yandulov, D. V.; Schrock, R. R.; Rheingold, A. L.; Ceccarelli,
C.; Davis, W. M. Inorg. Chem. 2003, 42, 796.
ꢀ
(11) Carey, D. T.; Cope-Eatough, E. K.; Vilaplana-Mafe, E.; Mair,
*Corresponding author. E-mail: wpiers@ucalgary.ca.
(1) Bourget-Merle, L.; Lappert, M. F.; Severn, J. R. Chem. Rev. 2002,
102, 3031.
F. S.; Pritchard, R. G.; Warren, J. E.; Woods, R. J. Dalton Trans. 2003,
1083.
(12) See Supporting Information for details.
(2) For specific examples of Ti, Zr, V, and Cr complexes: (a)
Budzelaar, P. H. M.; van Oort, A. B.; Orpen, A. G. Eur. J. Inorg. Chem.
1998, 1485. (b) Basuli, F.; Huffman, J. C.; Mindiola, D. J. Inorg. Chem.
2003, 42, 8003. (c) Basuli, F.; Bailey, B. C.; Tomaszewski, J.; Huffman, J.
C.; Mindiola, D. J. J. Am. Chem. Soc. 2003, 126, 6052. (d) Basuli, F.;
Kilgore, U. J.; Hu, X.; Meyer, K.; Pink, M.; Huffman, J. C.; Mindiola,
D. J. Angew. Chem., Int. Ed. 2004, 43, 3156. (e) Basuli, F; Bailey, B. C.;
Huffman, J. C.; Mindiola, D. J. Chem. Commun. 2003, 1554. (f) Basuli,
F.; Kilgore, U. J.; Brown, D.; Huffman, J. C.; Mindiola, D. J. Organo-
metallics 2004, 23, 6166. (g) Kakaliou, L.; Scanlon, W. J.; Qian, B.; Baek,
S. W.; Smith, M.; Motry, D. H. Inorg. Chem. 1999, 38, 5964. (h) Rahim,
M.; Taylor, N. J.; Xin, S.; Collins, S. Organometallics 1998, 17, 1315. (i)
Qian, B.; Scanlon, W. J.; Smith, M. R.; Motry, D. H. Organometallics
1999, 18, 1693. (j) MacAdams, L. A.; Buffone, G. P.; Incarvito, C. D.;
Rheingold, A. L.; Theopold, K. H. J. Am. Chem. Soc. 2005, 127, 1082.
(k) Kim, W.-K.; Fevola, M. J.; Liable-Sands, L. M.; Rheingold, A. L.;
Theopold, K. H. Organometallics 1998, 17, 4541.
(3) Hayes, P. G.; Lee, L. W. M.; Knight, L. K.; Piers, W. E.; Parvez,
M. Organometallics 2001, 20, 2533.
(4) Kenward, A. L.; Piers, W. E.; Parvez, W. E.; Hayes, P. G.
Organometallics 2009, DOI: 10.1021/om 900082d.
(5) (a) Hayes, P. G.; Piers, W. E.; McDonald, R. J. Am. Chem. Soc.
2002, 124, 2132. (b) Hayes, P. G.; Piers, W. E.; Parvez, M. J. Am. Chem.
Soc. 2003, 125, 5622. (c) Hayes, P. G.; Piers, W. E.; Parvez, M.
Organometallics 2005, 24, 1173. (d) Hayes, P. G.; Piers, W. E.; Parvez,
M. Chem.;Eur. J. 2007, 13, 2632.
(13) Synthesis of [H(3,5-trip-C6H3)NC(Me)CHC(Me)N(3,5-trip-
C6H3)] (2): A 100 mL round-bottom flask, fitted with a Dean-Stark
condenser, was charged with 2,4-pentanedione (137 mg, 1.37 mmol),
p-toluenesulfonic acid (260 mg, 1.37 mmol), and toluene (40 mL). This
mixture was warmed to 60 °C for 30 min, after which time a solution of
3,5-bis(2,4,6-triisopropylphenyl)aniline (1.37 g, 2.76 mmol) in toluene
(25 mL) was added via syringe. The reaction was refluxed overnight,
removing water in the Dean-Stark when necessary, and the solvent
˚
volume in the reaction vessel was kept to 60-70 mL. After 24 h, 5 A
molecular sieves were added, and the reaction was refluxed for another
48 h. After cooling to room temperature, NEt3 (160 mg, 1.6 mmol) was
added and the solution stirred for 20 min. Upon removing the volatiles in
vacuo, the yellow oily crude product was purified by column chromato-
graphy (using a basified silica column) and recrystallized in methanol
to give a fine yellow powder of
Hipt
L
H (1.05 g, 0.986 mmol, 72% yield).
H N), 7.01 (s, 8H, m-C6H2(trip)),
4
Me
1H NMR (CD2Cl2): 12.90 (s, 1H, N
6.70 (d, JH-H = 1.4 Hz, 4H, o-C6H3), 6.60 (t, JH-H = 1.4 Hz, 2H,
3 3 3 3
4
p-C6H3), 4.89 (s, 1H, CH), 2.90 (septet, JH-H = 6.9 Hz, 4H, p-iPrCH
3
(trip)), 2.77 (septet, JH-H = 6.9 Hz, 8H, o-iPrCH(trip)), 2.05 (s, 6H,
3
CH3), 1.28 (d, 3JH-H = 6.9 Hz, 24H, p-iPrCH3(trip)), 1.06 (d, 3JH-H
=
3
6.9 Hz, 24H, o-iPrCH3(trip)), 1.03 (d, JH-H = 6.9 Hz, 24H, o-iPr-
CH3(trip)). 13C{1H} NMR (CD2Cl2): 159.98, 148.54, 147.12, 145.93,
141.76, 137.49 (Cipso), 126.83 (p-C6H3), 122.05 (o-C6H3), 120.97 (m-
C6H2(trip)), 98.54 (CH), 34.91(p-iPrCH(trip)), 30.94 (o-iPrC (iPr-
CH3(trip)), 21.46 (CH3). Anal. Calcd for C77H106N2: C, 87.27; H,
10.08; N, 2.64. Found: C, 87.12; H, 10.14; N, 2.32.
r
2009 American Chemical Society
Published on Web 05/19/2009
pubs.acs.org/Organometallics