Palladium Catalyzed R-Arylation of Tetramic Acids
FIGURE 2. Retrosynthetic analysis of amino benzyl ketones.
SCHEME 1. General Synthesis of N-Boc-Protected Amino
SCHEME 2. Proposed r-Arylation of Tetramic Acids with
an Aryl Halide (X ) Cl, Br, I)
Acid-Derived Tetramic Acids8,9
and herbicides.7g Recently, methods for incorporation of amino
acid-derived tetramic acids into peptides have been developed,8
giving rise to more stable tripeptides. Tetramic acids derived
from amino acids are easily synthesized in good yield from
commercially available N-Boc amino acids and Meldrum’s acid
(2,2-dimethyl-1,3-dioxane-4,6-dione) via DCC (N,N′-dicyclo-
hexylcarbodiimide) or EDC (1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide) activation (see Scheme 1).8,9
Only a few examples in the literature have described the
3-aryl tetramic acids,10a,b the most important being the use of
3-phenyl 5-olefinic tetramic acids as novel glycine site N-
methyl-D-aspartate receptor antagonists, for the treatment of
neurological diseases.10c The development of a solid-phase
synthesis of substituted 3-aryl tetramic acids has also been
described.10d However, none of these methods utilize the easy
synthesis of N-Boc protected tetramic acids described above,
and the methods are not general, requiring the use of strong
base (e.g., KHMDS or NaOEt) and many synthetic steps. None
of these methods make it easy to efficiently synthesize a broad
range of 3-aryl-substituted amino acid-derived tetramic acids
as potentially interesting biologically active compounds. We
therefore wished to develop a useful method for the synthesis
of 3-aryl tetramic acids from the readily available N-Boc amino
acid-derived tetramic acids.
Specifically, we want to use these compounds as building
blocks for C-terminal modified peptides toward the preparation
of peptidyl enzyme inhibitors. For example, ring-opening of the
3-aryl tetramic acids followed by decarboxylation would lead
to a new type of amino benzyl ketones (see Figure 2), which
subsequently can be coupled to the C-terminal of a peptide.
Traditionally, R-arylated ketones or carboxylic acid deriva-
tives have been synthesized by nucleophilic aromatic substitution
reactions (SNAr) of aryls substituted with electron-withdrawing
groups by reaction with stabilized enolates11 or via copper-
catalyzed enolate reaction with 2-bromobenzoic acid.12 These
methods all have drawbacks and are not very general. Usually,
they require harsh reaction conditions, which are not suitable
for protected, enantiomerically pure amino acid derivatives.
Using a palladium-catalyzed R-arylation would be much more
efficient since these reactions are typically more general, mild,
and broad in substrate scope.
The literature reports a number of palladium-catalyzed
R-arylation conditions for different substrates containing elec-
tron-withdrawing groups such as ketones,13a aldehydes,13b
malonates,13c cyanoesters,13c sulfones,13d esters,13e amides,13f
protected amino acids,13g piperidinones,13h and nitriles.13i Only
a few examples of R-arylation of 1,3-dicarbonyls have been
described, and most of them are nonchiral and synthetically
undemanding compounds. Most of the examples have been
reported by Buchwald and co-workers,13a using substrates such
as diethyl malonate, 1,3-cyclohexanedione, and 1,3-cyclopen-
tanedione. Very recently more functionalized substrates have
been subjected to palladium-catalyzed arylation, e.g. the sp2
arylation of azine N-oxides,14 R-arylation of highly function-
(6) (a) Yamaguchi, H.; Nakayama, Y.; Takeda, K.; Tawara, K. J. Antibiot.,
Ser. A 1957, 10, 195–200. (b) Fujimoto, H.; Kinoshita, T.; Suzuki, H.; Umezawa,
H. J. Antibiot. 1970, 23, 271–275. (c) Pettit, G. R.; Kamano, Y.; Dufresne, C.;
Cerny, R. L.; Herald, C. L.; Schmidt, J. M. J. Org. Chem. 1989, 54, 6005–
6006. (d) Pettit, G. R.; Thornton, T. J.; Mullaney, J. T.; Boyd, M. R.; Herald,
D. L.; Singh, S.-B.; Flahive, E. J. Tetrahedron 1994, 50, 12097–12108. (e)
Wright, A. D.; Osterhage, C.; Ko¨nig, G. M. Org. Biomol. Chem. 2003, 1, 507–
510.
(7) (a) Jouin, P.; Catro, B.; Nisato, D. J. Chem. Soc., Perkin Trans. 1 1987,
1177–1182. (b) Schmidt, U.; Riedl, B.; Haas, G.; Griesser, H.; Vetter, A.;
Weinbrenner, S. Synthesis 1993, 216–220. (c) Fehrentz, J.-A.; Bourdel, E.;
Califano, J.-C.; Chaloin, O.; Devin, C.; Garrouste, P.; Lima-Leite, A.-C.; Llinares,
M.; Rieunier, F.; Vizavonna, J.; Winternitz, F.; Loffet, A.; Martinez, J.
Tetrahedron Lett. 1994, 35, 1557–1560. (d) Wittenberger, S. J.; Baker, W. R.;
Donner, B. G.; Hutchins, C. W. Tetrahedron Lett. 1991, 32, 7655–7658. (e)
Hlubucek, J. R.; Lowe, G. J. Chem. Soc., Chem. Commun. 1974, 419–420. (f)
Rooney, C. S.; Randall, W. C.; Streeter, K. B.; Ziegler, C.; Cragoe, E. J., Jr.;
Schwam, H.; Michelson, S. R.; Williams, H. W. R.; Eichler, E.; Duggan, D. E.;
Ulm, E. H.; Noll, R. M. J. Med. Chem. 1983, 26, 700–714. (g) Fischer, R.;
Lehr, S.; Feucht, D.; Losel, P.; Malsam, O.; Bojack, G.; Auler, T.; Hills, M. J.;
Kehne, H.; Rosinger, C. H. United States Patent Application Publication, US2007/
0225167, September 27, 2007.
(10) (a) Larsen, S.; Bernstein, J. J. Am. Chem. Soc. 1950, 72, 4447–4452.
(b) Andrews, M. D.; Brewster, A.; Moloney, M. G. Tetrahedron: Asymmetry
1994, 5, 1477–1478. (c) Mawer, I. M.; Kulagowski, J. J.; Leeson, P. D.;
Grimwood, S.; Marshall, G. R. Bioorg. Med. Chem. Lett. 1995, 5, 2643–2648.
(d) Matthews, J.; Rivero, R. A. J. Org. Chem. 1998, 63, 4808–4810.
(11) Heckmann, J. Ann. Chem. 1883, 220, 128–146.
(12) Bruggink, A.; McKillop, A. Tetrahedron 1975, 31, 2607–2619.
(13) (a) Fox, J. M.; Huang, X.; Chieffi, A.; Buchwald, S. L. J. Am. Chem.
Soc. 2000, 122, 1360–1370. (b) Terao, Y.; Fukuoka, Y.; Satoh, T.; Miura, M.;
Nomura, M. Tetrahedron Lett. 2002, 43, 101–104. (c) Beare, N. A.; Hartwig,
J. F. J. Org. Chem. 2002, 67, 541–555. (d) Mitin, A. V.; Kashin, A. N.;
Beletskaya, Russ. J. Org. Chem. 2004, 40, 802–812. (e) Lloyd-Jones, G. C.
Angew. Chem., Int. Ed. 2002, 41, 953–956. (f) Hama, T.; Liu, X.; Culkin, D. A.;
Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 11176–11177. (g) Lee, S.; Beare,
N. A.; Hartwig, J. F. J. Am. Chem. Soc. 2001, 123, 8410–8411. (h) Filippis, A.;
de Pardo, D. G.; Cossy, J. Tetrahedron 2004, 60, 9757–9767. (i) Culkin, D. A.;
Hartwig, J. F. Acc. Chem. Res. 2003, 36, 234–245.
(8) (a) Hosseini, M.; Kringelum, H.; Murray, A.; Tønder, J. E. Org. Lett.
2006, 8, 2103–2106. (b) Hosseini, M.; Grau, J. S.; Sørensen, K. K.; Søtofte, I.;
Tanner, D.; Murray, A.; Tønder, J. E. Org. Biomol. Chem. 2007, 5, 2207–2210.
(c) Hosseini, M.; Tanner, D.; Murray, A.; Tønder, J. E. Org. Biomol. Chem.
2007, 5, 3486–3494.
(9) (a) Ma, D.; Ma, J.; Ding, W.; Dai, L. Tetrahedron: Asymmetry 1996, 7,
2365–2370. (b) Courcambeck, J.; Bihel, F.; Michelis, C. D.; Que´le´ver, G.; Kraus,
J. L. J. Chem. Soc., Perkin Trans. 1 2001, 1421–1430.
(14) Schipper, D. J.; Campeau, L.-C.; Fagnou, K. Tetrahedron 2009, 65,
3155–3164.
J. Org. Chem. Vol. 74, No. 14, 2009 5033